• Title/Summary/Keyword: 피드백 제어기

Search Result 280, Processing Time 0.025 seconds

Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems (퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계)

  • 박창우;이종배;김영욱;성하경
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.79-90
    • /
    • 2004
  • Systematical robust stability analysis and design scheme for the feedback linearization control systems via fuzzy modeling are proposed. It is considered that uncertainty and disturbances are included in the Takagi-Sugeno fuzzy models representing the nonlinear plants. Robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions and by converting the analysis and design problems into the linear matrix inequality optimization, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Pitch-axis Maneuver of UAVs by Adaptive Control Approach (무인항공기의 적응제어 법칙을 이용한 피치 기동 연구)

  • Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1170-1176
    • /
    • 2010
  • This study addresses adaptive control of UAVs(Unmanned Aerial Vehicles) pitch-axis maneuver. The MRAC(Model Referenced Adaptive Control) approach is employed to accommodate uncertainties which are introduced by feedback linearization of pitch attitude control by elevator input. The model uncertainty is handled by adaptation laws which update model parameters while the UAV is under control by the feedback control law. Steady-state pitch attitude achieved by the stabilizing control law is derived to provide insight on the closed-loop behavior of the controlled system. The proposed idea is free of linearization, gain-scheduling procedures, so that one can design high maneuverability of UAVs for pitching motion in the presence of significant model uncertainty.

Automobile Cruise Control System Using PID Controller and Kalman Filter (PID 제어와 Kalman 필터를 이용한 자동차 정속주행 시스템)

  • Kim, Su Yeol;Kim, Pyung Soo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.241-248
    • /
    • 2022
  • In this paper, the PID controller and Kalman filter are applied to improve the automobile cruise control in the environment with disturbance and noise, and the performance is verified through diverse simulation. First, a mathematical model for a automobile cruise control system is introduced. Second, the performance degradation due to disturbance in the basic open-loop control based cruise control system is shown and then PID controller-based feedback control system to resolve this problem is verified. Third, to improve the performance degradation due to sensor noise that may occur during the feedback process, a Kalman filter is applied and verified. Ultimately, it is verified that the designed cruise control system with PID controller and Kalman filter not only satisfies all performance conditions but also has the ability for disturbance rejection and noise reduction.

Control of Pressure and Thrust for a Variable Thrust Solid Propulsion System Using Linearization (선형화 기법을 이용한 가변추력 고체추진 기관의 압력 및 추력 제어)

  • Kim, Young-Seok;Cha, Ji-Hyeong;Ko, Sang-Ho;Kim, Dae-Seung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.18-25
    • /
    • 2011
  • Solid propulsion systems have simple structures compared to other propulsion systems and are suitable for long-term storage. However the systems generally have limits on control of thrust levels. In this paper we suggest control algorithms for combustion chamber pressure of variable thrust solid propulsion systems using special nozzles such as pintle valve. For the pressure control within the chamber, we use a simple pressure change model by considering only mass conservation within the combustion chamber, design a classical algorithm and also a nonlinear controller using the feedback linearization technique. Also we derive the equation of the thrust for an under-expanded one-dimensional nozzle and then design a proportional-intergral controller after linearizing the thrust model for an operating point. Finally, we demonstrate the performance of the controller through a numerical simulation.

A Variable Hysteresis Comparator Circuit Controlled by Serial Digital Bits Against Jamming (교란 방어를 위하여 히스테리시스가 시리얼로 제어되는 가변 비교기 회로)

  • Kim, Young-Gi
    • Journal of IKEEE
    • /
    • v.16 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • In order to overcome jamming, a hysteresis tunable monolithic comparator circuit based on a 0.35 ${\mu}m$ CMOS process is suggested, designed, fabricated, measured and analyzed in this paper. To tune the threshold voltage of the hysteresis in the comparator circuit, two external digital bits are used with supply voltage of 3.3V. An improved variable hysteresis comparator circuit controlled by serial digital bits is suggested, designed and simulated to overcome jamming in modern warfare.

Swing-up and Stabilization Control of a SESIP System (SESIP 시스템의 스윙업과 안정화 제어)

  • So, Myung-Ok;Yoo, Heui-Han;Ryu, Ki-Tak;Lee, Yun-Hyung;Lee, Jong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.310-317
    • /
    • 2010
  • In this paper, we propose a method for swing-up and stabilization of a SESIP(Self-Erecting Single Inverted Pendulum) system which is one of the typical nonlinear systems. We use PV(Proportional velocity) controller for swinging up the pendulum and employ a PI-type state-feedback controller for stabilizing the pendulum. Control is switched to a stabilizing controller, which is designed to balance the inverted position of pendulum and the cart position to the near vertical position. Computer simulations are performed to illustrate the control performance of the proposed scheme.

Welding Quality Improvement of Inverter Spot Welder by Electrode Movement Control (전극분리 제어에 의한 인버터 스폿용접기의 용접품질 향상)

  • 김재문;김종덕;원충연;최규하;김규식;목형수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.276-284
    • /
    • 2000
  • 저항 스폿용접기에서 용접품질의 보증은 오래 계속 되어온 문제이었다. 본 논문에서는 용접품질과 전극분리와의 관계를 조사하였으며 전극분리가 하나의 제어변수로써 사용될 수 있음을 실험적으로 입증하였다. 피드백신호로서 전극분리를 이용한 퍼지제어에 기초를 둔 용접품질개선을 제시하였다. 저항 스폿용접기의 용접품질은 인장전단강도시험과 같은 파괴적인 검사에 의해 증명되었다. 시험결과는 퍼지 제어기를 이용한 전극분리 제어의 성능이 종래의 정전류 제어와 비교하여 훨씬 더 우수하였다.

  • PDF

A Study on Chaos Control of a Chua' Oscillator Circuit Using a Lyapunov function (리아프노프 함수를 이용한 Chua 오실레이터 회로에서의 카오스 제어)

  • 배영철;고재호;유창환;홍대승;임화영
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.113-120
    • /
    • 1999
  • In this paper, chaotic signals of a Chua's oscillator are effectively controlled to low periodic signal(1-periodic signal, 2-periodic signal, etc) or equilibrium point using the linear state feedback technique. The proposed linear state feedback technique has characteristics, that any solution of the Chua's oscillator can be a goal of the control(fixed point, periodic orbit, etc). The controller has a very simple structure, which does not require adjusting system parameters.

  • PDF

Feedback Load Control Mechanism for Real-Time Web Services (실시간 웹 서비스를 위한 피드백 부하 제어 기법)

  • Jung, Suk-Yong
    • Journal of the Korea Convergence Society
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2010
  • This paper proposes a mechanism for managing overload in real-time web service system. The many previous mechanisms manage overload with controlling web request. These mechanisms can control only new web request. They don't have any control existing tasks, especially periodic tasks. We design a controller that able to meet real-time performance with controlling even periodic tasks. A feedback control system is implemented applying the proposed mechanism. And we verified the stable operation of system.

The Robust Control of Two Mass Spring System (2관성 공진 시스템의 강건제어)

  • 조도현;이종용;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.76-86
    • /
    • 1998
  • The Two-Mass Spring(TMS or Two-Inertia Resonance) system is one of the simplest models which generate a torsional vibration. In this system, it is required to design a controller achieving the control performance while suppressing the torsional vibration. In this paper, we compared and considered with the state feedback effects for the TMS system. By connecting each controller design to the state feedback control, we could predict each controller performances and decide weighting functions and parameters of LQ and $H_\infty$ controller.

  • PDF