• Title/Summary/Keyword: 플라즈마 질화

Search Result 187, Processing Time 0.029 seconds

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate (Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화)

  • Kim, Woo-Hee;Kim, Bum-Soo;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.

Effects of Plasma-Nitriding on the Surface Characteristics of Stainless Steels Containing Nb (Nb함유 스테인리스강의 표면특성에 미치는 플라즈마질화의 영향)

    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.119-127
    • /
    • 2004
  • In order to develop the corrosion and wear resistance of stainless steels, effects of plasma-nitriding on the surface characteristics of stainless steels containing Nb were investigated by utilizing a potentiostat. It was found that plasma nitriding at $350^{\circ}C$, compared with $500^{\circ}C$, produced a good corrosion resistance as nitriding time increased, whereas stainless steel containing low Nb content showed that pitting potential and corrosion potential decreased.

한국의 과학기술 어디까지 왔나 - PDP기술

  • Park, Myeong-Ho
    • The Science & Technology
    • /
    • v.32 no.2 s.357
    • /
    • pp.22-23
    • /
    • 1999
  • 대형화면으로 현장감 넘치는 영상을 즐길 수 있는 디스플레이어에 대한 요구가 증대되고 있다. 대형화, 디지털화, 고정세화, 고화질화 등이 용이한 플라즈마 디스플레이 패널(PDP)이 21세기 멀티미디어시대의 총아로 떠오르고 있다. 우리나라는 90년대 중반부터 본격적인 연구개발에 착수하여 97년 LG전자가 국내 최초로 40인치 PDP개발에 성공하였으며 일본보다 앞서서 세계 최초로 초대형 60인치를 선보이게 되었다.

  • PDF

A Study on the Electrical Properties of Plasma Silicon Nitride (플라즈마 실리콘 질화막의 전기적 특성에 관한 연구)

  • 주현성;주승기
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.4
    • /
    • pp.215-220
    • /
    • 1989
  • Silicon Nitride whose thickness is about $100\AA$by the ellipsometer was successfully formed by the Plasma reaction. Nitrogen Plasma was formed by applying the 200KHz, 500Watt power between the two electroes and nitridation of silicon was carried out directly on the top of the silicon wafer. Thus Silicon Nitride formed was oxidized to from oxynitrides and their electrical characterlstice were analyzed by measuring I-V curves and capacitances. Through ESCA depth profiles, the chemical composition changes before and after the oxidation wers analyzed.

  • PDF

Numerical analysis of inductively coupled plasma assisted duplex deposition system (유도 결합 플라즈마를 이용한 스퍼터, 증발 복합 증착 시스템의 수치 해석)

  • Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.147-147
    • /
    • 2012
  • 스퍼터링을 이용한 증착 시스템은 인가된 전력의 대부분이 타겟의 가열에 사용되어 에너지 효율이 낮다는 단점이 있고, 저항 가열을 이용한 증발 증착 시스템은 대전류를 필요로 하고 증발 물질이 보트 물질과 반응하지 말아야 한다는 제약이 있고 질화물을 형성하는 반응성 프로세스에서 증발량을 일정하게 조절하기 어렵다. 두 가지 공정의 장점을 살린 스퍼터-승화 시스템을 고안하고 이를 위한 수치 해석을 CFD-ACE+를 이용하여 실시하였다.

  • PDF

Effect of a Laser Ablation on High Voltage Discharge Plasma Area for Carbon Nitride Film Deposition (고전압 방전 플라즈마에 의한 질화탄소 박막 증착 시 플라즈마 영역에 가한 레이저 애블레이션의 효과)

  • 김종일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.551-557
    • /
    • 2002
  • Carbon nitride films have been deposited on Si(100) substrate by a high voltage discharge plasma combined with laser ablation in a nitrogen atmosphere. The films were grown both with the without the presence of an assisting focused Nd:YAG laser ablation. The laser ablation of the graphite target leads to vapor plume plasma expending into th ambient nitrogen arc discharge area. X-ray photoelectron spectroscopy and Auger electron spectroscopy were used to identify the binding structure and the content of the nitrogen species in the deposited films. The nitrogen content of the films was found to increase drastically with an increase of nitrogen pressure. The surface morphology of the films was studied using a scanning electron microscopy. Data of infrared spectroscopy and x-ray photoelectron spectroscopy indicate the existence of carbon-nitrogen bonds in the films. The x-ray diffraction measurements have also been taken to characterize the crystal properties of the obtained films.

A Study on the Structure Properties of Plasma Silicon Oxynitride Film (플라즈마 실리콘 OXYNITRIDE막의 구조적 특성에 관한 고찰)

  • 성영권;이철진;최복길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.483-491
    • /
    • 1992
  • Plasma silicon oxynitride film has been applied as a final passivation layer for semiconductor devices, because it has high resistance to humidity and prevents from alkali ion's penetration, and has low film stress. Structure properties of plasma silicon oxynitride film have been studied experimentally by the use of FT-IR, AES, stress gauge and ellipsometry. In this experiment,Si-N bonds increase as NS12TO/(NS12TO+NHS13T) gas ratio increases. Peaks of Si-N bond, Si-H bond and N-H bond were shifted to high wavenumber according to NS12TO/(NS12TO+NHS13T) gas ratio increase. Absorption peaks of Si-H bond were decreased by furnace anneal at 90$0^{\circ}C$. The atomic composition of film represents that oxygen atoms increase as NS12TO/(NS12TO+NHS13T) gas ratio increases, to the contrary, nitrogen atoms decrease.

  • PDF

Fabrication of Aluminum Nitride Reinforced Aluminum Matrix Composites via Plasma Arc Melting under Nitrogen Atmosphere (플라즈마 아크 용해 공정으로 자발합성된 질화알루미늄 강화 알루미늄기지 복합재료의 개발)

  • Sujin Jeong;Je In Lee;Eun Soo Park
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.101-107
    • /
    • 2023
  • In this study, aluminum nitride (AlN) reinforced aluminum (Al) matrix composites are fabricated via plasma arc melting under a nitrogen atmosphere. Within a minute of the chemical reaction between Al and N, dispersed AlN with the shape of transient and lamellar layers is in situ formed in the Al matrix. The composite contains 10 vol.% AlN reinforcements with low thermal resistance and strong bonding at the interfaces, which leads to the unique combination of thermal expansivity and conductivity in the resulting composites. The coefficient of thermal expansion of the composite can be further reduced when Si was alloyed into the Al matrix, which proposes the potential of the in situ Al matrix composites for thermal management applications.

Bonding Strength Evaluation of Copper Bonding Using Copper Nitride Layer (구리 질화막을 이용한 구리 접합 구조의 접합강도 연구)

  • Seo, Hankyeol;Park, Haesung;Kim, Gahui;Park, Young-Bae;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.55-60
    • /
    • 2020
  • The recent semiconductor packaging technology is evolving into a high-performance system-in-packaging (SIP) structure, and copper-to-copper bonding process becomes an important core technology to realize SIP. Copper-to-copper bonding process faces challenges such as copper oxidation and high temperature and high pressure process conditions. In this study, the bonding interface quality of low-temperature copper-to-copper bonding using a two-step plasma treatment was investigated through quantitative bonding strength measurements. Our two-step plasma treatment formed copper nitride layer on copper surface which enables low-temperature copper bonding. The bonding strength was evaluated by the four-point bending test method and the shear test method, and the average bonding shear strength was 30.40 MPa, showing that the copper-to-copper bonding process using a two-step plasma process had excellent bonding strength.