• Title/Summary/Keyword: 프린지 차수

Search Result 10, Processing Time 0.024 seconds

인장시편 및 응력동결된 디스크의 프린지 상수 측정에 의한 다목적 편광기 성능시험

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Dong-Hyun;Lee, Chun-Tae;Kim, Hwan;Park, Tae-Geun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.178-178
    • /
    • 2004
  • 본 연구에서는 폴리카보나이트의 재료로 만들어진 인장시편과 원형시편을 다목적 광탄성 측정기를 사용하여 프린지 차수를 측정한 후 프린지 상수를 도출하였다. 특히, 새로 개발된 다목적 광탄성기를 이용하여 지랫대 형식으로 프린지 차수를 측정하였고, 시편에 직접 응력을 가하는 방식의 직접(DIRECT) 실험법으로 프린지 차수를 측정하였다. 위와 같은 방식은 나타난 결과를 가지고 프린지 상수를 서로 비교할 수 있다는 장점이 있어 다목적 광탄성기에 대한 신뢰도를 얻을 수 있다 아울러 광탄성 4단계 위상 이동법에서는 주응력 방향, 즉 등경선이 일정한 선상에서는 연속적인 응력분포를 얻을 수 있다.(중략)

  • PDF

Hybrid Stress Analysis around a Circular Hole in a Tensile Plate by Use of Phase Shifting Photoelasticity (광탄성 위상이동법에 의한 인장시편 원형 구멍주위 하이브리드 응력해석)

  • Baek, Tae-Hyun;Lee, Choon-Tae;Yang, Min-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2007
  • A hybrid experimental-numerical method is presented for determining the stresses around a circular hole in a finite-width, tensile loaded plate. Measured fringe orders along straight lines provided the input information on the external boundary of the hybrid element. In order to see the effects of varying stress field, different numbers of terms in a power-series representation of the complex type conformal mapping stress function were tested. For qualitative comparison, actual isochromatic fringes were compared with reconstructed theoretical fringes using stress-optic law. For quantitative comparison, relative errors and standard deviations with respective to relative errors were analyzed for all measured points by changing the number of terms of stress function. The hybrid results are highly comparable with those predicted by FEA. The results show that this approach is effective and promising because isochromatic data along the straight lines in photoelasticity can be conveniently measured by use of phase shifting photoelasticity.

Analysis of Stress Distribution of a Curved Beam Using Photoelasticity (광탄성법을 이용한 곡선보 평판의 응력분포 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Soo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.200-206
    • /
    • 1999
  • This paper describes the stress analysis of a curved beam by using photoelasticity. In order to measure accurate isochromatic fringe orders at certain locations. fringes are doubled and sharpened by digital image processing. After fringe multiplication and sharpening. fringe orders can be read as a quarter order interval (N=0, 1/4, 2/4, 3/4,...). The results obtained from photoelastic experiment are compared with those calculated by using theory. Two results are agreed well even though there are some scatter bands with maximum 8 percent for the results of photoelastic measurements and theoretical calculation. Difference may be occurred due to the slight misalignment of the direction to which axial load is applied in photoelastic experiment. It is confirmed that accurate measurement of stress distribution can be possible by using the techniques of fringe multiplication and sharpening in photoelasticity.

  • PDF

Material Stress Fringe Constant Measurement of Specimen under Pure Bending Load by Use of Photoelastic Phase Shifting Method (광탄성 위상이동법을 이용한 순수굽힘보 시편의 재료 응력 프린지 상수 측정)

  • Liu, Guan Yong;Kim, Myung Soo;Baek, Tae Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1387-1394
    • /
    • 2014
  • In a photoelastic experiment, it is necessary to know the material stress fringe constant of the photoelastic specimen to determine the stresses from the measured isochromatic fringe orders. The material stress fringe constant can be obtained using a simple tension specimen and/or a circular disk under diametric compression. In these methods, there is generally a need to apply numerous loads to the specimen in response to the relationship of the fringe order. Then, the least squares method is used to obtain the material constant. In this paper, the fringe orders that appear on a four-point bending specimen are used to determine the fringe constant. This method requires four photoelastic fringes obtained from a circular polariscope by rotating the analyzer to 0, ${\pi}/4$, ${\pi}/2$, and $3{\pi}/4$ radians. Using the four-point bending specimen to determine the material stress fringe constant has an advantage because measurements can be made at different locations by applying a constant load. The stress fringe constant measured with this method is within the range suggested by the manufacturer of the photoelastic material.

Fringe Analysis around an Inclined Crack Tip of Finite-Width Plate under Tensile Load by Photoelastic Phase-Shifting Method (광탄성 위상이동법을 이용한 인장판 경사균열 선단주위의 프린지 해석)

  • Li, Weizheng;Baek, Tae-Hyun;Hong, Dong-Pyo;Lee, Byung-Hee;Seo, Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Photoelasticity is a technique of experimental methods and has been widely used in various domains of engineering to determine the stress distribution of structures. Without complicated mathematical formulation, this technique can conveniently provide a fairly accurate whole-field stress analysis for a mechanical structure. Here, stress distribution around an inclined crack tip of finite-width plate is studied by 8-step phase-shifting method. This method is a kind of photoelastic phase-shifting techniques and can be used for the determination of the phase values of isochromatics and isoclinics. According to stress-optic law, the stress distribution could be obtained from fringe patterns. The results obtained by polariscope arrangement combined with 8-step method and ABAQUS FEM simulations are compared with each other. Good agreement between them shows that 8-step phase-shifting method is reliable and can be used for determination of stress by experiment.

Stress Measurement of a Squarely Perforated Plate by Photoelastic Phase Shifting Method (광탄성 위상이동법에 의한 사각형 구멍주위의 응력해석)

  • Lee C.T.;Park T.G.;Jung J.;Panganiban H.;Chung T.J.;Baek T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.49-50
    • /
    • 2006
  • Photoelasticity is widely and conveniently used methods for whole field stress analysis. In this paper, 8-step photoelastic phase shifting method was performed by using a multi-purpose polariscope to measure the fringe orders along a specified line on the specimen containing a square hole. The material of the specimen is made of Polycarbonate. The measurement results by 8-step phase shifting method were compared with the those calculated by ABAQUS.

  • PDF

Analysis of Photoelastic Stress Field Around Inclined Crack Tip by Using Hybrid Technique (하이브리드 기법에 의한 경사균열 팁 주위의 광탄성 응력장 해석)

  • Chen, Lei;Seo, Jin;Lee, Byung-Hee;Kim, Myung-Soo;Baek, Tae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1287-1292
    • /
    • 2010
  • In this paper, a hybrid technique is presented. First, the isochromatic fringe data of a given set of points are calculated by the finite element method and are used as input data in complex variable formulations. Then the numerical model of the specimen with a central inclined crack is transformed from the physical plane to the complex plane by conformal mapping. The stress field is analyzed and the mixed-mode stress intensity factors are calculated for this complex plane. The stress intensity factors are calculated by the finite element method as well as by a theoretical method and compared with each other. In order to conveniently compare these values with each other, both actual and regenerated photoelastic fringe patterns are multiplied by a factor of two and sharpened by digital image processing.

Analysis of Principal Stress Distribution Difference of Tensile Plate with Partial Through-hole (부분 관통 구멍이 있는 인장판의 주응력 분포 차이 해석)

  • Park, Sang Hyun;Kim, Young Chul;Kim, Myung Soo;Baek, Tae Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.437-444
    • /
    • 2017
  • Stress concentrations around discontinuities, such as a hole in cross section of a structural member, have great importance because the most materials failure around the region may be occurred. Stress on the point applied by concentrated load reaches much larger value than the average stress in structural member. In this paper, stress analysis was performed for the plate with a partial through-hole to find the difference of the principal stress distribution. The difference between maximum principal stress and minimum principal stress in photoelasticity is equal to the value obtained by multiplying the isochromatic fringe order by the fringe constant of the material divided by the distance through which the light passes, that is, the thickness of the specimen. Since the difference of principal stress is proportional to the photoelastic fringe order, the distribution of the principal stress difference by the finite element analysis can be compared with the photoelasticity experimental result. ANSYS Workbench, that is the finite element software, is used to compute the differences of principal stresses at the specific points on the measured lines. The computation values obtained by ANSYS are compared with the experimental measurements by photoelasticity, and two results are comparable to each other. In addition, the stress concentration factor is obtained using the stress distribution analyzed from the variation of hole depth. Stress concentration factor is increasing, as the depth of hole increase.

Measurement of Isochromatic Fringe Distribution of a TV Glass Panel by Use of Photoelastic 4-step Phase Shifting Method (광탄성 4단계 위상이동법을 이용한 TV유리패널의 등색프린지 분포측정)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Cho, Seong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • This paper presents the experimental results measured by photoelastic 4-step phase shifting method for the isochromatic fringe distribution in a TV glass panel. In the conventional photoelastic method, the isochromatic fringe orders are measured manually point by point. The 4-step phase shifting method uses four images obtained from a circular polariscope by rotating the analyzer to $0^{\circ},\;45^{\circ},\;90^{\circ}$, and $135^{\circ}$. In order to use the 4-step phase shifting method, the elements of a polariscope should be aligned to isoclinic direction at a point and/or along a line where isochromatic fringe distribution is measured. Experimental results obtained from the 4-step phase shifting method are compared with those measured by the Senarmont compensation method. Both results are well agreed. Then, isochromatic fringe distributions in the TV glass panel that is heat-treated before and after are compared. Maximum and minimum isochromatic fringe orders in the TV glass panel with before- and after-heat treatment are changed approximately two times.

Analysis of Stress Concentration between Fillet and Hole in a Stepped Plate under Tensile Load by Photoelasticity (단이 진 인장부재 필릿과 구멍사이 응력집중에 관한 광탄성법 해석)

  • Baek, Tae-Hyun;Kim, Myung-Soo;Kim, Young-Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.2
    • /
    • pp.207-214
    • /
    • 2015
  • Stress concentrations around discontinuities, such as a hole or a sudden change in cross section of a structural member, have great important cause in the most materials failure because the stress near the points of application of concentrated loads can reach values much larger than the average value of the stress in the member. This paper presents the stress concentrations between fillet and hole at different locations in a stepped plate under tensile loading. The analysis for interaction effect of stress concentration was performed by photoelasticity and ANSYS which is a commercial finite element software. From the analysis results, the circular hole located at the different position from the fillet radius can cause different values of stress concentration factor within interacting region.