• Title/Summary/Keyword: 프리스트레스 수준

Search Result 34, Processing Time 0.022 seconds

An Advanced Design Procedure for Dome and Ring Beam of Concrete Containment Structures (콘크리트 격납구조물 돔과 링빔의 개선된 설계기법)

  • Jeon, Se-Jin;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.817-824
    • /
    • 2010
  • The concrete containment structures have been widely used in nuclear power plants, LNG storage tanks, etc., due to their high safety and economic efficiency. The containment structure consists of a bottom slab, wall, ring beam and dome. The shape of the roof dome has a very significant effect on structural safety, the quantity of materials, and constructability; the thickness and curvature of the dome should therefore be determined to give the optimum design. The ring beam plays the role as supports for the dome, resulting in a minimized deformation of the wall. The main issues in designing the ring beam are the correct dimensions of the section and the prestress level. In this study, an efficient design procedure is proposed that can be used to determine an optimal shape and prestress level of the dome and ring beam. In the preliminary design stage of the procedure, the membrane theory of shells of revolution is adopted to determine several plausible alternatives which can be obtained even by hand calculation. Based on the proposed procedures, domes and ring beams of the existing domestic containment structures are analyzed and some improvements are discussed.

A Study on the Development of GEOCON for the Geometry Control of Precast Segmental Bridges(I) (프리캐스트 세그멘탈 교량의 선형관리를 위한 GEOCON의 개발에 관한 연구(1))

  • 이환우;곽효경
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.161-169
    • /
    • 1998
  • 프리스트레스트 콘크리트 교량의 건설공법인 프리캐스트 세그멘탈 공법에서선형관리 기술은 핵심기술 중 하나이다. 그럼에도 불구하고 , 우리나라에서는 몇몇 교량기술자들에게 경험적으로 이해되고 있는 수준을 넘지 못하고 있다. 특히, 세그멘트의 제작에서부터 반드시 필요한 선형관리용 S/W 및 그 운용기술은 아직까지도 선진기술에 의존하고 있는 실정이다. 본 연구에서는 프리캐스트 세그멘탈 공법의 선형관리 기술에 대한 연구를 통하여 3차원적인 세그멘트 제작관리와 가설시 선형관리를 위한 제작선형을 자동적으로 계산할 수 있는 GEOCON을 개발하였다. 본 논문에서는 GEOCON의 알고리즘에 대하여 논하였으며, 특히 수치예제로서 제작오차의 발생위치에 따라 교량선형에 미치는 영향을 분석하였다.

Evaluation of Shear Design Provisions for Reinforced Concrete Beams and Prestressed Concrete Beams (철근콘크리트 보와 프리스트레스트 콘크리트 보의 전단설계기준에 대한 고찰)

  • Kim Kang-Su;Kim Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.717-726
    • /
    • 2005
  • Shear test data have been extracted from previous experimental research and compiled into a database that may be the largest ever made. In this paper, the shear database (SDB) was used for evaluating shear design provisions for both reinforced concrete (RC) beams and prestressd concrete (PSC) beams. A discussion on the use of the results of this evaluation related to calibration and strength reduction factor for the shear design provisions was also provided. It was observed that the shear design provisions did not provide good predictions for RC members and gave very poor predictions especially for RC members without shear reinforcement. On the other hand, the limit on shear strength contributed by transverse reinforcement was observed to be lower than necessary. The shear design provisions gave very unconservative results for the large RC members (d>700mm) without shear reinforcement having light amount of longitudinal reinforcement $(\rho_w<1.0\%)$. However, for PSC members the shear design provisions gave a good estimation of ultimate shear strength with a reasonable margin of safety. Despite of a large difference of accuracy in prediction of shear strength for RC members and PSC members, the shear design provisions used a same shear strength reduction factor for these members. As a result, the shear design provisions did not provide a uniform factor of safety against shear failure for different types of members.

Detection of Fracture Signals of Low Prestressed Steel Wires in a 10 m PSC Beam by Continuous Acoustic Monitoring Techniques (연속음향감지기법을 이용한 긴장력이 감소된 10 m PSC보의 PS 강선 파단음파 감지)

  • Youn, Seok-Goo;Lee, Chang-No
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.113-122
    • /
    • 2010
  • Corrosion of prestressing tendons and wire fractures in grouted post-tensioned prestressed concrete bridges have been considered as a serious safety problem. In bridge evaluation the condition of prestressing tendons should be inspected, and if corroded tendons are found, the loss of tendon area should be included when we calculate the ultimate strength. In the previous study, it was evaluated that continuous acoustic monitoring techniques could be considered as a reliable non-destructive method for detecting wire fractures of fully grouted post-tensioned prestressing tendons. In the present study, an experimental test was performed for detecting wire fractures of post-tensioned prestressing tendons which are prestressed lower than current design level. A 10 m prestressed concrete beam was fabricated, which included two tendons prestressed 66 percentage and 40 percentage of tensile strength, respectively. The corrosion of two tendons was induced by an accelerated corrosion equipment and the test beam was monitored by using seven acoustic sensors and a continuous acoustic monitoring system. From each prestressing tendon, two acoustic signals of wire fractures were successfully detected and source locations were estimated within 20 mm error. Based on the test results, it is considered that continuous acoustic monitoring techniques can be applied to detect low-prestressed wire fracture in fully grouted post-tensioned prestressed concrete beams.

The Relationship between Job Stress and Organizational Effectiveness for Office Workers (기업조직 특성에 따른 사무직 근로자의 직무스트레스와 조직효과성 간의 관계)

  • Chae, Yoo-Mi;Rhie, Jeong-bae;Lee, Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.389-399
    • /
    • 2016
  • The purpose of this study was to provide the evidence necessary to establish job stress management strategies to improve office workers conditions by looking at the impact on job stress factors depending on the nature of the organization. The stress related variables (job stress and psychological well-being) and organizational effectiveness variables (job satisfaction, job engagement, intention to leave, and presentieesm) was included. A total of 154 questionnaires were distributed from 26th June to 1 August 2014 and 150 people were analyzed. The results indicated that a lack of reward was negatively correlated with job satisfaction and job engagement, and positively correlated with the intention to leave (p<0.05) in a large-sized company model. Moreover, in a medium-sized company model, organizational injustice was statistically significant with job satisfaction and job engagement. Organizational injustice, lack of reward, and occupational climate was positively correlated with the intention to leave (p<0.05). This study has its significance in that it looked at the job stress as a predictive variable to explain the organizational effectiveness and highlights the need to establish a stress management strategy depending on the nature of the company.

Experimental Study on Flexural Behavior of RC Beams Strengthened with Prestressed CFRP Plate (CFRP판으로 프리스트레싱 보강한 RC 보의 휨거동에 관한 실험적 연구)

  • Han, Sang-Hoon;Hong, Ki-Nam;Kim, Hyung-Jin;Woo, Sang-Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.301-310
    • /
    • 2006
  • Carbon fiber reinforced polymer (CRFP) materials are well suited to the rehabilitation of civil engineering structures due to their corrosion resistance, high strength to weight ratio and high stiffness to weight ratio. Their application in the field of the rehabilitation of concrete structures is increased due to the vast number of bridges and buildings in need of strengthening. However, RC members, strengthened with externally bonded CFRP plates, happened to collapse before reaching the expected design failure load. Therefore, it is necessary to develop the new strengthening method to overcome the problems of previous bonded strengthening method. This problems can be solved by prestressing the CFRP plate before bonding to the concrete. In this study, a total of 21 specimens of 3.3 m length were tested by the four point bending method after strengthening them with externally bonded CFRP plates. The CFRP plates were bonded without prestress and with various prestress levels ranging from 0.4% to 0.8% of CFRP plate strain. All specimen with end anchorage failed by a plate fracture regardless of the prestress levels while the specimen without end anchorage failed by the separation of the plate from the beam due to premature debonding. The cracking loads was proportionally related to the prestress levels, but the maximum loads of specimens strengthened with prestressed CFRP plates were insignificantly affected by the prestress levels.

Structural Performance of Pre-tensioned Half-depth Precast Panels (프리텐션 반두께 바닥판을 갖는 바닥판의 구조성능 평가)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1707-1721
    • /
    • 2014
  • Half-depth panels were developed with the merits of CIP (Cast In Place) decks and precast decks for constructability and fast construction. In this paper, details of half-depth panels with pre-tensioning were suggested. For evaluation of structural performance, five half-depth panel specimens were fabricated and static tests were conducted. The cross-sections of these specimens were composed of pre-tensioned half-depth panels and pre-tensioned two-span half-depth panels. Test parameters were the amount of the prestressing force and the longitudinal reinforcements. Static tests on simply-supported slabs showed that ultimate strength was 1.55 times greater than calculated nominal strength. The flexural strength was only 10 % increased and the influence on crack width control was negligible when the member of tendons was increased twice. For two-span continuous specimens, the ultimate strength increased 1.2 times and 1.38 times respectively as the reinforcement was additionally provided. The verified half-depth panels by this research can be effectively utilized for the fast replacement or construction of bridges.

Design Analysis of Launching Noses by the Proposed Design Equation (최적설계 제안식을 이용한 ILM 압출추진코의 설계분석)

  • Lee, Hwan-Woo;Ahn, Tae-Wook;Jang, Jae-Youp
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.404-407
    • /
    • 2009
  • ILM(incremental launching method) 교량공법은 품질확보에 효과적인 프리스트레스 콘크리트 교량공법으로 인정받고 있다. 이 공법에 의해 시공되는 교량의 상부단면은 시공 중에 지간의 중앙부와 지점부에 일시적이나마 모두 위치하게 된다. 앞선 연구에서 압출 중인 ILM 교량의 상부단면에 발생하는 단면력의 변화를 간편하게 예측할 수 있는 해석식을 개발하였다. 그리고 개발된 해석식을 이용하여 매개변수들의 변화에 따른 상호작용의 영향을 분석하여 많은 대안들이 검토되는 초기 설계단계에 유용한 설계식도 제안하였다. 본 논문에서는 압출중인 ILM 교량의 상부단면에 발생하는 단면력을 효과적으로 제어위해 유도된 해석식을 이용하여 현재 국내 공용중인 ILM 교량의 설계수준을 검토하였고, 상부구조의 최적설계를 위한 방안을 제시하였다.

  • PDF

Efficient Design Procedure of Concrete Dome and Ring Beam in Containment Structures (콘크리트 격납구조물 돔 및 링빔의 효율적인 설계 기법)

  • Jeon, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.139-140
    • /
    • 2010
  • Combined analysis is required for the concrete dome and ring beam of containment structure due to the interaction in section forces. In this study, an efficient design procedure is proposed that can be used to determine the preliminary sections of the dome and ring beam as well as a proper level of prestress in the ring beam, prior to a detailed design. The procedure applies the membrane theory of the shell of revolution.

  • PDF

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck System of Railway Bridges (철도교용 프리캐스트 바닥판의 적정한 종방향 프리스트레스 수준의 산정)

  • Jang Sung-Wook;Youn Seok-Goo;Jeon Se-Jin;Kim Young-Jin;Hyung Tai-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail. acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses, design codes and theoretical equations for the frequently adopted PSC composite girder railway bridge. The estimated proper prestress level to counteract those tensile stresses is over 2.4 MPa, which is similar to the case of the highway bridges.

  • PDF