• Title/Summary/Keyword: 프리스트레스 강연선

Search Result 41, Processing Time 0.028 seconds

Investigation on Applicability of 2400 MPa Strand for Posttensioned Prestressed Concrete Girders (포스트텐션 PSC 거더에 대한 2400 MPa급 강연선의 적용성 분석)

  • Park, Ho;Cho, Jae-Yeol;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.727-735
    • /
    • 2012
  • Recently, a high-strength strand of 2400 MPa was developed using domestic technologies. In 2011, KS D 7002 was revised to cover the newly developed high-strength strands to support their practical usage. Presently, however, discussions and evaluations are not sufficient on the mechanical properties of the strands and their performance in structural members. Also, there were no detailed reviews on the need to revise the current design code for practical use of the high-strength strands. In this study, flexural behavior of a member with the high-strength strands was estimated through sectional analysis and a review and comparison of the domestic and foreign design codes were conducted considering the analysis results. Also, the need for the revision of the design code was discussed. Such discussion especially focused on the estimation of the stress in strand, which related with various issues such as determination methods for yield point of strands, time-dependent loss of prestressing force, estimation of stress in strand at member failure, and net strain limit for ductile failure of member. The discussion revealed that some parts in the design code need a revision and the further studies are required.

Prediction of Transfer Lengths in Pretensioned Concrete Members Using Neuro-Fuzzy System (뉴로-퍼지 시스템을 이용한 프리텐션 콘크리트 부재의 전달길이 예측)

  • Kim, Minsu;Han, Sun-Jin;Cho, Hae-Chang;Oh, Jae-Yuel;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.723-731
    • /
    • 2016
  • In pretensioned concrete members, a certain bond length from the end of the member is required to secure the effective prestress in the strands, which is defined as the transfer length. However, due to the complex bond mechanism between strands and concrete, most transfer length models based on the deterministic approach have uncertainties and do not provide accurate estimations. Therefore, in this study, Adaptive Neuro-Fuzzy Inference System (ANFIS), a Neuro-Fuzzy System, is introduced to reduce the uncertainties and to estimate the transfer length more accurately in pretensioned concrete member. A total of 253 transfer length test results have been collected from literatures to train ANFIS, and the trained ANFIS algorithm estimated the transfer length very accurately. In addition, a design equation was proposed to calculate the transfer length based on parametric studies and dimensional analyses. Consequently, the proposed equation provided accurate results on the transfer length which are comparable to the ANFIS analysis results.

Flexural Performance of Multistage Prestressed and Self-weight Preflex Girder (다단계 자중 프리플렉스 및 프리스트레싱 합성거더의 시공단계에 따른 휨성능 평가)

  • Choi, Byung Ho;Kim, Tae Bong;Park, Sung Kyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.311-321
    • /
    • 2017
  • This paper deals with the flexural performance of a composite girder system designed to readily form a composite section without a formwork and to easily realize multistage preflexing and prestressing. After a 3-Dimensional finite element modeling for construction stage analysis, the parametric numerical analysis was performed to analyse the stress distribution on the composite girder sections and the prestressing effects along with concrete pouring method and strand tensioning method. Based on the stress distribution analysis, a favorable construction stage model has been rationally chosen and then the ultimate flexural strengths were evaluated to conduct a comparative study, which exceed the nominal flexural strength suggested by the current design specification(ASD). It can be concluded that the proposed composite girder and fabrication procedure should have a sufficient structural performance.

The Load Transfer Performance of Post-tension Anchorage with 2,400 MPa Strands (2,400 MPa 강연선용 포스트텐션 정착구의 하중전달성능)

  • Kim, Sun-Woo;Lho, Byeong-Cheol;Lim, Jung-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.63-71
    • /
    • 2018
  • Strands with ultimate strength of 2,400 MPa was developed and applied in the KCI Code and the KS standard. A high-strength prestressed strand to be applied to a structure, a suitable anchorage system should be used together. Recently, a post tension anchorage for 2,400 MPa strands was developed. but there is not much research on performance evaluation. Therefore, in this study, structural analysis of local zone with 9 strands, 15 strands, and 19 strands anchorage were investigated respectively, which are most widely used for post tensioning anchorages with 2,400 MPa strands, according to PTI anchorage zone design method, and Load transfer performance from ETAG013 and/or KCI-PS101 was evaluated. Furthermore, the adequacy of the test was also analyzed by nonlinear numerical analysis. As results, the anchorages with 2,400 MPa strands satisfied the structural performance of the local area and satisfied the load transfer performance condition.

An Experimental Study on the Flexural Behavior of Slab Repaired and Reinforced with Strand and Polymer Mortar (강연선과 폴리머 모르타르에 의해 보수보강된 슬래브의 휨거동에 대한 실험적 고찰)

  • Yang Dong-Suk;Hwang Jeong-Ho;Park Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.171-177
    • /
    • 2005
  • Even though the cost associated with the repair and rehabilitation of existing structures are rapidly increasing, vast number of the repaired and rehabilitated structures do not function properly as expected during their remaining service lives. This paper focused on the flexural behavior of reinforced concrete slabs repaired and reinforced by PS strand and polymer mortar in the tension face. The slabs have the size of 700${\times}120{\times}$2200 m and 700${\times}120{\times}$1300 mm. Variables of experiment were space of strengthening, chipping, the number of strand, the kind of mortar in this experimental study. Attention is concentrated upon overall bending capacity, deflection, ductility and failure mode of repaired and reinforced slabs. Test results show that deflection of repaired and reinforced slabs reduced to approximately $40 \%$ comparison to standard slabs. Boundary cracking of chipping slab started ultimate load afterward. Concrete-mortar interface cracked 64.5 kN in repaired slab with AP mortar and 36.0 kN in repaired slab with general polymer mortar. Reinforcement effect increased with reducing space of strand. Also, Reinforcement effects are more by strand than by polymer mortar.

Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands (2,400 MPa급 고강도 강연선이 적용된 LNG 저장탱크의 프리스트레싱 효과)

  • Jeon, Se-Jin;Seo, Hae-Keun;Yang, Jun-Mo;Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.999-1010
    • /
    • 2016
  • High-strength strands have been increasingly applied to recent actual structures in Korea. Structural effect of the increased spacing of sheaths was investigated in this study when the usual 1,860 MPa strands of an LNG storage tank are replaced with 2,400 MPa high-strength strands. First, finite element models of a cylindrical wall of an LNG tank were established and prestressing effect of the circumferential and vertical tendons was considered as equivalent loads. As a result of varying the tendon spacing and prestressing force with the total prestressing effect kept the same, the stress distribution required in design was obtained with the high-strength strands. Also, a full-scale specimen that corresponds to a part of an LNG tank wall was fabricated with 31 high-strength strands with 15.2 mm diameter inserted in each of two sheaths. It was observed that such a high level of prestressing force can be properly transferred to concrete. Moreover, an LNG tank with the world's largest 270,000 kl capacity was modeled and the prestressing effect of high-strength strands was compared with that of normal strands. The watertightness specifications such as residual compressive stress and residual compression zone were also ensured in case of leakage accident. The results of this study can be effectively used when the 2,400 MPa high-strength strands are applied to actual LNG tanks.

Bond Characteristics of PS Strand around the End Zones of High Strength Pretensioned Prestressed Concrete Members (고강도 프리텐션 프리스트레스트 콘크리트 부재 단부 영역에서의 PS 강연선 부착특성 연구)

  • 김동백;김의성
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.102-107
    • /
    • 2000
  • The extensive use of pretensioned prestressed concrete in the modem construction industry, together with wider application of pretensioned components for structural purposes requires some important consideration on the adequate transfer of prestress force into the concrete, especially around the end zones of pretensioned member. The main objective of this paper is to study the effects of various important parameters on the bond characteristics of prestressing strand around the end zone of high strength pretensioned concrete members. To this end, a comprehensive experimental program has been set up. The principal test variables considered were strand diameter, concrete strength, concrete cover size. The present study provides valuable test data for the realistic and accurate determination of transfer length, which can be efficiently used for improving the design equation of transfer length in pretensioned prestressed concrete members.

  • PDF

A Parametric Study of Deflection Analysis of the Prestressed Beams using Finite Element Analysis (유한요소해석을 이용한 프리스트레스트 보의 처짐에 대한 변수 해석)

  • Park, Ha Eun;Choi, Jin Woong;Kim, Min Sook;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • The purpose of this study is to analyze the deflection of the prestressed beams. In this paper, a finite element model for deflections of prestressed beams is presented. Proposed finite element model was verified comparing with existing experimental results, and it showed a good agreement with the experimental results. Also, a parametric study has been conducted to analyze the influence of eccentricity, span-depth ratio, and prestressing force. The finite element model results were compared with hand calculation results. Deflections were increased as the eccentricity decreases, the span-depth ratio increases, and the prestressing force decreases. Hand calculation overestimated the deflection when the eccectricity or prestressing force is too small.

Numerical Study on Wire Strength Under Both Tension and Deflection for Use as Prestressing Steel (인장과 휨을 동시에 받는 프리스트레스 강선의 굴절인장성능 평가)

  • Kim, Jin-Kook;Seong, Taek-Ryong;Yang, Jun-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.147-153
    • /
    • 2019
  • The prestressing steel wire, which is applied a tension to reinforce the structure, is applied flexure simultaneously by the duct and the deviator. In order to evaluate the deflected tensile performance of the prestressing steel wire subjected to both tensile and flexural stresses, the numerical analysis for 600 cases with variables of wire diameters, mandrel diameters, and friction coefficient between mandrel and steel wire was performed. As the result of analysis, the larger the diameter of the steel wire was, the lower the deflected tensile performance was, and the effect decreased with the increase of the wire elongation. The effect of mandrel diameter and friction coefficient between mandrel and wire on the deflected tensile performance of the wire was very small. But the deflected tensile performance and the friction coefficient between mandrel and strand showed a relatively high correlation. Therefore, it is necessary to make enough large elongation to secure the deflected tensile performance. If there is a restriction on the elongation, it is necessary to reduce the diameter of the steel wire to an appropriate value, and to increase the friction between steel wires by adjusting the surface condition of the steel wire.

A Study on the Strength Enhancement of Wale in Temporary Retaining Structures (흙막이 지하 가시설 구조체의 띠장 휨 강성 증대를 위한 연구)

  • Lim, Dong Hwan;Lee, Yong Jun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.91-96
    • /
    • 2009
  • The purpose of this study was to investigate a method for the strength enhancement of wale in temporary retaining structures. Tests on the wale structures strengthened with carbon fibre reinforced plastic (CFRP) strips and prestressed with seven wire strands were conducted. From this test, it is found that the flexural stiffness and strength of the wales strengthened with CFRP strips and seven wire strands were significantly improved compared to the unstrengthened one. The ultimate tensile strains of attached CFRP strips on the steel beam were in the range of 8,000 and $11,000{\mu}{\epsilon}$, and it is noticed that the bonding ability with steel and CFRP strips is good. In this paper, a new method for enhancing the strength of wale in retaining structures is suggested.