DOI QR코드

DOI QR Code

Prestressing Effect of LNG Storage Tank with 2,400 MPa High-Strength Strands

2,400 MPa급 고강도 강연선이 적용된 LNG 저장탱크의 프리스트레싱 효과

  • 전세진 (아주대학교 건설시스템공학과) ;
  • 서해근 (DM 엔지니어링 설계부) ;
  • 양준모 ((주)포스코 철강솔루션마케팅실) ;
  • 윤석구 (서울과학기술대학교 건설시스템공학과)
  • Received : 2016.07.29
  • Accepted : 2016.10.25
  • Published : 2016.12.01

Abstract

High-strength strands have been increasingly applied to recent actual structures in Korea. Structural effect of the increased spacing of sheaths was investigated in this study when the usual 1,860 MPa strands of an LNG storage tank are replaced with 2,400 MPa high-strength strands. First, finite element models of a cylindrical wall of an LNG tank were established and prestressing effect of the circumferential and vertical tendons was considered as equivalent loads. As a result of varying the tendon spacing and prestressing force with the total prestressing effect kept the same, the stress distribution required in design was obtained with the high-strength strands. Also, a full-scale specimen that corresponds to a part of an LNG tank wall was fabricated with 31 high-strength strands with 15.2 mm diameter inserted in each of two sheaths. It was observed that such a high level of prestressing force can be properly transferred to concrete. Moreover, an LNG tank with the world's largest 270,000 kl capacity was modeled and the prestressing effect of high-strength strands was compared with that of normal strands. The watertightness specifications such as residual compressive stress and residual compression zone were also ensured in case of leakage accident. The results of this study can be effectively used when the 2,400 MPa high-strength strands are applied to actual LNG tanks.

최근 국내에서는 고강도 강연선이 실구조물에 적용되는 사례가 늘어나고 있다. 이 연구에서는 LNG 저장탱크에 통상적으로 적용되는 1,860 MPa급 강연선을 2,400 MPa급 고강도 강연선으로 대체할 때 쉬스 배치 간격 증가에 따른 구조적인 영향을 고찰해 보았다. 먼저, LNG 탱크의 원통형 벽체를 모사하는 유한요소모델에 원환텐던 및 수직텐던의 프리스트레싱 효과를 등가하중으로 가하되 프리스트레싱 효과의 총합은 일정한 상태에서 텐던의 간격 및 긴장력을 조절한 결과, 고강도 강연선을 적용해도 설계 시 요구되는 소정의 응력 분포를 구현할 수 있는 것으로 나타났다. 또한, LNG 탱크 벽체 일부분을 모사하는 실대형 실험체를 제작하고 15.2 mm 직경 고강도 강연선이 31개 삽입된 쉬스를 2개 배치하여 매우 높은 수준의 프리스트레싱 힘이 콘크리트에 적절히 전달되는지 관찰하였다. 한편, 세계 최대 용량인 270,000 kl급 LNG 탱크의 유한요소모델을 구축하고 고강도 강연선을 적용했을 때의 프리스트레싱 효과를 일반 강연선의 경우와 비교하였으며, LNG 누출 사고 시에도 여유압축응력 및 여유압축구간과 같은 수밀성 규정을 만족함을 확인하였다. 이 연구결과는 2,400 MPa급 고강도 강연선이 실제 LNG 탱크에 적용될 때 유용하게 활용될 것으로 기대된다.

Keywords

References

  1. ACI Committee 373 (1997). Design and construction of circular prestressed concrete structures with circumferential tendons (ACI 373R-97), American Concrete Institute (ACI).
  2. Daewoo Engineering and Construction (2004). Technical proposal for above-ground LNG storage tank with 200,000kl capacity, DEP-003-2004, Daewoo Engineering and Construction (in Korean).
  3. Dassault Systemes Simulia (2015). Abaqus 6.15-Analysis user's manual, Dassault Systemes Simulia.
  4. European Organisation for Technical Approvals (EOTA) (2002). Guideline for European technical approval of post-tensioning kits for prestressing of structures (ETAG 013), EOTA.
  5. Japan Prestressed Concrete Institute (JPCI) (2005). The standard for design and construction about PC tank with the water reservoir, JPCI (in Japanese).
  6. Jeon, S. J. (2004). "Consistent assessment for liquid tightness of LNG storage tank subjected to cryogenic temperature-induced forces." Journal of the Korean Society of Civil Engineers, Vol. 24, No. 1A, pp. 203-210 (in Korean).
  7. Jeon, S. J. (2005). "A comparative study on the equivalent load method and the initial stress method for prestressing modeling of the tendon." Journal of the Korean Society of Civil Engineers, Vol. 25, No. 5A, pp. 899-906 (in Korean).
  8. Jeon, S. J. and Kim, S. M. (2004). "Structural analysis of prestressed concrete structures." Magazine of the Korea Concrete Institute, Vol. 16, No. 1, pp. 57-64 (in Korean). https://doi.org/10.22636/MKCI.2004.16.1.57
  9. Jeon, S. J., Chung, C. H. and Jin, B. M. (2003). "Advanced heat transfer analysis model of LNG storage tank." Journal of the Korean Society of Civil Engineers, Vol. 23, No. 6A, pp. 1087-1094 (in Korean).
  10. Jeon, S. J., Jin, B. M., Kim, Y. J. and Chung, C. H. (2007). "Consistent thermal analysis procedure of LNG storage tank." Structural Engineering and Mechanics, Vol. 25, No. 4, pp. 445-466. https://doi.org/10.12989/sem.2007.25.4.445
  11. Kim, J. K., Seong, T. R. and Lee, J. K. (2012). "Development of 2,160 MPa/2,400 MPa PS strand and its application technology." Magazine of the Korea Concrete Institute, Vol. 24, No. 3, pp. 45-50 (in Korean). https://doi.org/10.4334/JKCI.2012.24.1.045
  12. Kim, J. K., Yang, J. M. and Yim, H. J. (2016). "Experimental evaluation of transfer length in pretensioned concrete beams using 2,400-MPa prestressed strands." Journal of Structural Engineering, Vol. 142, No. 11, pp. 04016088. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001567
  13. Kim, K. H. (2009). Analytical study on long-term losses of the high strength strand, Master's thesis, Seoul National University of Technology (in Korean).
  14. Korea Concrete Institute (KCI) (2009). Standard specification for concrete, KCI (in Korean).
  15. Korea Concrete Institute (KCI) (2012). Structural concrete design code, KCI (in Korean).
  16. Korea Concrete Institute (KCI) (2015). Development of design guideline and analysis of LPG/LNG tank prestressed with 2400 MPa PT, KCI-R-15-018, KCI (in Korean).
  17. Korean Agency for Technology and Standards (KATS) (2011). Uncoated stress-relieved steel wires and strands for prestressed concrete (KS D 7002), Korean Standards Association (KSA) (in Korean).
  18. Lin, T. Y. (1963). "Load balancing method for design and analysis of prestressed concrete structures." ACI Journal, Vol. 60, No. 6, pp. 719-742.
  19. Lin, T. Y. and Burns, N. H. (1981). Design of prestressed concrete structures, 3rd Ed., John Wiley and Sons.
  20. Oh, B. H. and Jeon, S. J. (2002). "Limitations and realistic application of equivalent load methods in pre-stressed concrete structures." Magazine of Concrete Research, Vol. 54, No. 3, pp. 223-231. https://doi.org/10.1680/macr.2002.54.3.223
  21. Park, H., Cho, J. Y. and Kim, J. S. (2012). "Investigation on applicability of 2400 MPa strand for posttensioned prestressed concrete girders." Journal of the Korea Concrete Institute, Vol. 24, No. 6, pp. 727-735 (in Korean). https://doi.org/10.4334/JKCI.2012.24.6.727
  22. Seo, H. K. (2016). Analysis of prestressing effect of LNG storage tank with 2400 MPa high-strength strands, Master's thesis, Ajou University (in Korean).
  23. Shin, H. M. (2008). Prestressed concrete, 10th Ed., Dongmyungsa (in Korean).
  24. Timoshenko, S. P. and Goodier, J. N. (1970). Theory of elasticity, McGraw-Hill.
  25. Yang, J. M., Kim, J. K., Youn, S. G., Jeon, S. J., Kim, K. H. and Ahn, Y. S. (2016). "Application of 2,400 MPa PS strand to LNG/LPG storage tank." Magazine of the Korea Concrete Institute, Vol. 28, No. 1, pp. 41-45 (in Korean). https://doi.org/10.4334/JKCI.2016.28.1.041

Cited by

  1. Static and Cryogenic Performance Evaluation of 2400 MPa PT Anchorage System for Applying LNG Storage Tank vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.213