• Title/Summary/Keyword: 프로세스마이닝

Search Result 108, Processing Time 0.025 seconds

EDF: An Interactive Tool for Event Log Generation for Enabling Process Mining in Small and Medium-sized Enterprises

  • Frans Prathama;Seokrae Won;Iq Reviessay Pulshashi;Riska Asriana Sutrisnowati
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.101-112
    • /
    • 2024
  • In this paper, we present EDF (Event Data Factory), an interactive tool designed to assist event log generation for process mining. EDF integrates various data connectors to improve its capability to assist users in connecting to diverse data sources. Our tool employs low-code/no-code technology, along with graph-based visualization, to help non-expert users understand process flow and enhance the user experience. By utilizing metadata information, EDF allows users to efficiently generate an event log containing case, activity, and timestamp attributes. Through log quality metrics, our tool enables users to assess the generated event log quality. We implement EDF under a cloud-based architecture and run a performance evaluation. Our case study and results demonstrate the usability and applicability of EDF. Finally, an observational study confirms that EDF is easy to use and beneficial, expanding small and medium-sized enterprises' (SMEs) access to process mining applications.

Discretizing Spatio-Temporal Data using Data Reduction and Clustering (데이타 축소와 군집화를 사용하는 시공간 데이타의 이산화 기법)

  • Kang, Ju-Young;Yong, Hwan-Seung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • To increase the efficiency of mining process and derive accurate spatio-temporal patterns, continuous values of attributes should be discretized prior to mining process. In this paper, we propose a discretization method which improves the mining efficiency by reducing the data size without losing the correlations in the data. The proposed method first s original trajectories into approximations using line simplification and then groups them into similar clusters. Our experiments show that the proposed approach improves the mining efficiency as well as extracts more intuitive patterns compared to existing discretization methods.

Data-driven Co-Design Process for New Product Development: A Case Study on Smart Heating Jacket (신제품 개발을 위한 데이터 기반 공동 디자인 프로세스: 스마트 난방복 사례 연구)

  • Leem, Sooyeon;Lee, Sang Won
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.133-141
    • /
    • 2021
  • This research suggests a design process that effectively complements the human-centered design through an objective data-driven approach. The subjective human-centered design process can often lack objectivity and can be supplemented by the data-driven approaches to effectively discover hidden user needs. This research combines the data mining analysis with co-design process and verifies its applicability through the case study on the smart heating jacket. In the data mining process, the clustering can group the users which is the basis for selecting the target groups and the decision tree analysis primarily identifies the important user perception attributes and values. The broad point of view based on the data analysis is modified through the co-design process which is the deeper human-centered design process by using the developed workbook. In the co-design process, the journey maps, needs and pain points, ideas, values for the target user groups are identified and finalized. They can become the basis for starting new product development.

Big data Cloud Service for Manufacturing Process Analysis (제조 공정 분석을 위한 빅데이터 클라우드 서비스)

  • Lee, Yong-Hyeok;Song, Min-Seok;Ha, Seung-Jin;Baek, Tae-Hyun;Son, Sook-Young
    • The Journal of Bigdata
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Big data is an emerging issue as large data which was impossible to be processed in the past is possible to be handled with the development of information and communication technology. Manufacturing is the most promising field that big data is applied such that there are abundant data available. It is important to improve an efficiency of manufacturing process for quality control and production efficiency because the processes from production design, sales, productions and so on are mixed intricately. This study proposes big data cloud service for manufacturing analysis using a big data technology and a process mining technique. It is expected for manufacturing corporations to improve a manufacturing process and reduced the cost by applying the proposed service. The service provides various analyses including manufacturing analysis and manufacturing duration analysis. Big data cloud service has been implemented and it has been validated by conducting a case study.

  • PDF

The Gradation Mining Process for Active Botnet Detection and Management (능동형 봇넷 탐지 및 관리를 위한 단계적 마이닝 프로세스)

  • Do-Hoon Kim;;Sung-yong Shin;Hoh Peter In;HyunCheol Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.1510-1512
    • /
    • 2008
  • 사이버 공간에서 미래 최대 위협 중 하나로 인식되고 있는 봇넷의 공격이 점차 증가함에 따라, 봇넷 공격에 기반한 피해가 증가하고 있으며, 금전적인 피해 유발로 그 심각성이 점차 증대되고 있는 실정이다. 특히, 봇넷은 좀비 PC를 활용하는 측면에서 제 2차, 3차 피해가 우려되고 있다. 따라서 봇넷의 탐지를 1차적으로 끝나는 것이 아니라 지속적인 관찰과 관리를 통해 변종 봇넷을 탐지 하고 이에 기반한 악성행위를 탐지하는 것이 무엇보다도 중요하다. 따라서 본 논문에서는 이러한 봇넷을 능동적으로 탐지하기 위한 능동형 봇넷 탐지 및 관리를 위한 단계적 마이닝 프로세스를 제안하고 기존 탐지 알고리즘과의 비교 평가를 하여 향후 적용을 위한 고려사항들을 논의 하고자 한다.

Modeling a Multi-Agent based Web Mining System on the Hierarchical Web Environment (계층적 웹 환경에서의 멀티-에이전트 기반 웹 마이닝 시스템 설계)

  • 윤희병;김화수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.27-30
    • /
    • 2003
  • 웹 기반하에서 사용자의 질의에 대한 효율적인 검색결과를 제공하기 위하여 다양한 검색 알고리즘들이 개발되어 왔으며, 이러한 알고리즘들의 대부분은 사용자의 선호도나 편의성을 고려하였다. 그러나 지금까지 개발된 검색 알고리즘들은 일반적으로 웹이라는 수평의 비계층적인 웹 환경에서 개발된 것으로서 기업의 전사적 네트워크와 같이 계층적이고 기능적으로 복잡하게 구성되어 있는 웹 기반 환경에서는 적용하기가 힘든 실정이다. 본 논문에서는 이러한 특수한 웹 기반 환경하에서 사용자에게 효율적으로 마이닝 결과를 제공할 수 있는 멀티-에이전트 기반의 웹 마이닝 시스템을 제안한다. 이를 위해 우리는 계층적 웹 기반 환경이라는 네트워크 모델을 제시하며, 제시된 웹 환경에서 적용할 수 있는 4개의 협력 에이전트와 14개의 프로세스 모듈을 가진 멀티-에이전트 기반의 웹 마이닝 시스템을 설계한다. 그리고 각 에이전트에 대한 세부기능을 계층적 환경을 고려하여 모듈별로 설명하며 특히, 새로운 머징 에이전트와 개선된 랭킹 알고리즘을 그래프 이론을 적용하여 제안한다.

  • PDF

An Extensible Text Mining Technique for the Extraction of Protein-Protein Interaction (단백질 상호작용 추출을 위한 확장성을 가진 텍스트 마이닝 기법)

  • 이현철;여은주;강희영;조완섭;김학용;유재수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.256-258
    • /
    • 2004
  • 단백질간의 상호작용에 대한 연구는 생물학적 프로세스를 이해하기 위해 중요한 부분이다. 이러한 단백질간의 상호작용에 대한 정보는 주로 생명과학 관련 연구논문에 존재하지만 컴퓨터로 자동으로 처리하여 상호작용에 관안 정보를 추출할 수 있기 위해서는 텍스트 마이닝 기술이 적용되어야 한다 바이오 텍스트 마이닝에서 대두되고 있는 중요한 쟁점은 대용량의 연구논문에서 필요한 정보를 어떻게 효율적으로 정확하게 추출할 것인가에 대한 내용이다. 또한, 관심이 있는 단백질의 종류나 관련성을 표시하는 문장내 패턴의 다양성을 수용하기 위하여 개발하는 시스템의 확장성을 높이는 것도 소프트웨어 공학적인 측면에서 중요한 이슈이다 이 논문의 목적은 생물학적 내용을 담고 있는 연구논문으로부터 단백질간의 상호작용을 추출하는 확장성을 가진 텍스트 마이닝 기법을 제안하는데 있다.

  • PDF

An Activity Analysis Method for Workflow Visual Verification and Mining (워크플로우 가시적 검증 및 마이닝을 위한 액티비티 분석 방법)

  • Kim, Kwang-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.9 no.4
    • /
    • pp.133-142
    • /
    • 2008
  • This paper conceives and implements an activity analysis method as a tool to be used for workflow visual verification and mining. One of the recent issues in the workflow and business process literature is to refine and to improve the deployed workflows and business processes. The activity analysis method proposed in this paper provides a way to fine a set of activities being directly affected by the specific activity that a user tries to change its properties. I would strongly believe that the method can be a useful solution for the dynamic changes and visual verifications problems of workflow models as well as the workflow process mining problems. Finally, to prove the possibility of the proposed method and its applicability, we apply to a workflow model of the electronic approval system run by a real corporation.

  • PDF

A Control Path Analysis Mechanism for Workflow Mining (워크플로우 마이닝을 위한 제어 경로 분석 메커니즘)

  • Min Jun-Ki;Kim Kwang-Hoon;Chung Jung-Su
    • Journal of Internet Computing and Services
    • /
    • v.7 no.1
    • /
    • pp.91-99
    • /
    • 2006
  • This paper proposes a control path analysis mechanism to be used in the workflow mining framework maximizing the workflow traceability and re discoverability by analyzing the total sequences of the control path perspective of a workflow model and by rediscovering their runtime enactment history from the workflow log information. The mechanism has two components One is to generate the total sequences of the control paths from a workflow mode by transforming it to a control path decision tree, and the other is to rediscover the runtime enactment history of each control path out of the total sequences from the corresponding workflow's execution logs. Eventually, these rediscovered knowledge and execution history of a workflow model make up a control path oriented intelligence of the workflow model. which ought to be an essential ingredient for maintaining and reengineering the qualify of the workflow model. Based upon the workflow intelligence, it is possible for the workflow model to be gradually refined and finally maximize its qualify by repeatedly redesigning and reengineering during its whole life long time period.

  • PDF

A Development on a Predictive Model for Buying Unemployment Insurance Program Based on Public Data (공공데이터 기반 고용보험 가입 예측 모델 개발 연구)

  • Cho, Minsu;Kim, Dohyeon;Song, Minseok;Kim, Kwangyong;Jeong, Chungsik;Kim, Kidae
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.17-31
    • /
    • 2017
  • With the development of the big data environment, public institutions also have been providing big data infrastructures. Public data is one of the typical examples, and numerous applications using public data have been provided. One of the cases is related to the employment insurance. All employers have to make contracts for the employment insurance for all employees to protect the rights. However, there are abundant cases where employers avoid to buy insurances. To overcome these challenges, a data-driven approach is needed; however, there are lacks of methodologies to integrate, manage, and analyze the public data. In this paper, we propose a methodology to build a predictive model for identifying whether employers have made the contracts of employment insurance based on public data. The methodology includes collection, integration, pre-processing, analysis of data and generating prediction models based on process mining and data mining techniques. Also, we verify the methodology with case studies.

  • PDF