Frans Prathama;Seokrae Won;Iq Reviessay Pulshashi;Riska Asriana Sutrisnowati
Journal of the Korea Society of Computer and Information
/
v.29
no.6
/
pp.101-112
/
2024
In this paper, we present EDF (Event Data Factory), an interactive tool designed to assist event log generation for process mining. EDF integrates various data connectors to improve its capability to assist users in connecting to diverse data sources. Our tool employs low-code/no-code technology, along with graph-based visualization, to help non-expert users understand process flow and enhance the user experience. By utilizing metadata information, EDF allows users to efficiently generate an event log containing case, activity, and timestamp attributes. Through log quality metrics, our tool enables users to assess the generated event log quality. We implement EDF under a cloud-based architecture and run a performance evaluation. Our case study and results demonstrate the usability and applicability of EDF. Finally, an observational study confirms that EDF is easy to use and beneficial, expanding small and medium-sized enterprises' (SMEs) access to process mining applications.
To increase the efficiency of mining process and derive accurate spatio-temporal patterns, continuous values of attributes should be discretized prior to mining process. In this paper, we propose a discretization method which improves the mining efficiency by reducing the data size without losing the correlations in the data. The proposed method first s original trajectories into approximations using line simplification and then groups them into similar clusters. Our experiments show that the proposed approach improves the mining efficiency as well as extracts more intuitive patterns compared to existing discretization methods.
This research suggests a design process that effectively complements the human-centered design through an objective data-driven approach. The subjective human-centered design process can often lack objectivity and can be supplemented by the data-driven approaches to effectively discover hidden user needs. This research combines the data mining analysis with co-design process and verifies its applicability through the case study on the smart heating jacket. In the data mining process, the clustering can group the users which is the basis for selecting the target groups and the decision tree analysis primarily identifies the important user perception attributes and values. The broad point of view based on the data analysis is modified through the co-design process which is the deeper human-centered design process by using the developed workbook. In the co-design process, the journey maps, needs and pain points, ideas, values for the target user groups are identified and finalized. They can become the basis for starting new product development.
Big data is an emerging issue as large data which was impossible to be processed in the past is possible to be handled with the development of information and communication technology. Manufacturing is the most promising field that big data is applied such that there are abundant data available. It is important to improve an efficiency of manufacturing process for quality control and production efficiency because the processes from production design, sales, productions and so on are mixed intricately. This study proposes big data cloud service for manufacturing analysis using a big data technology and a process mining technique. It is expected for manufacturing corporations to improve a manufacturing process and reduced the cost by applying the proposed service. The service provides various analyses including manufacturing analysis and manufacturing duration analysis. Big data cloud service has been implemented and it has been validated by conducting a case study.
Do-Hoon Kim;;Sung-yong Shin;Hoh Peter In;HyunCheol Jeong
Proceedings of the Korea Information Processing Society Conference
/
2008.11a
/
pp.1510-1512
/
2008
사이버 공간에서 미래 최대 위협 중 하나로 인식되고 있는 봇넷의 공격이 점차 증가함에 따라, 봇넷 공격에 기반한 피해가 증가하고 있으며, 금전적인 피해 유발로 그 심각성이 점차 증대되고 있는 실정이다. 특히, 봇넷은 좀비 PC를 활용하는 측면에서 제 2차, 3차 피해가 우려되고 있다. 따라서 봇넷의 탐지를 1차적으로 끝나는 것이 아니라 지속적인 관찰과 관리를 통해 변종 봇넷을 탐지 하고 이에 기반한 악성행위를 탐지하는 것이 무엇보다도 중요하다. 따라서 본 논문에서는 이러한 봇넷을 능동적으로 탐지하기 위한 능동형 봇넷 탐지 및 관리를 위한 단계적 마이닝 프로세스를 제안하고 기존 탐지 알고리즘과의 비교 평가를 하여 향후 적용을 위한 고려사항들을 논의 하고자 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09b
/
pp.27-30
/
2003
웹 기반하에서 사용자의 질의에 대한 효율적인 검색결과를 제공하기 위하여 다양한 검색 알고리즘들이 개발되어 왔으며, 이러한 알고리즘들의 대부분은 사용자의 선호도나 편의성을 고려하였다. 그러나 지금까지 개발된 검색 알고리즘들은 일반적으로 웹이라는 수평의 비계층적인 웹 환경에서 개발된 것으로서 기업의 전사적 네트워크와 같이 계층적이고 기능적으로 복잡하게 구성되어 있는 웹 기반 환경에서는 적용하기가 힘든 실정이다. 본 논문에서는 이러한 특수한 웹 기반 환경하에서 사용자에게 효율적으로 마이닝 결과를 제공할 수 있는 멀티-에이전트 기반의 웹 마이닝 시스템을 제안한다. 이를 위해 우리는 계층적 웹 기반 환경이라는 네트워크 모델을 제시하며, 제시된 웹 환경에서 적용할 수 있는 4개의 협력 에이전트와 14개의 프로세스 모듈을 가진 멀티-에이전트 기반의 웹 마이닝 시스템을 설계한다. 그리고 각 에이전트에 대한 세부기능을 계층적 환경을 고려하여 모듈별로 설명하며 특히, 새로운 머징 에이전트와 개선된 랭킹 알고리즘을 그래프 이론을 적용하여 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.256-258
/
2004
단백질간의 상호작용에 대한 연구는 생물학적 프로세스를 이해하기 위해 중요한 부분이다. 이러한 단백질간의 상호작용에 대한 정보는 주로 생명과학 관련 연구논문에 존재하지만 컴퓨터로 자동으로 처리하여 상호작용에 관안 정보를 추출할 수 있기 위해서는 텍스트 마이닝 기술이 적용되어야 한다 바이오 텍스트 마이닝에서 대두되고 있는 중요한 쟁점은 대용량의 연구논문에서 필요한 정보를 어떻게 효율적으로 정확하게 추출할 것인가에 대한 내용이다. 또한, 관심이 있는 단백질의 종류나 관련성을 표시하는 문장내 패턴의 다양성을 수용하기 위하여 개발하는 시스템의 확장성을 높이는 것도 소프트웨어 공학적인 측면에서 중요한 이슈이다 이 논문의 목적은 생물학적 내용을 담고 있는 연구논문으로부터 단백질간의 상호작용을 추출하는 확장성을 가진 텍스트 마이닝 기법을 제안하는데 있다.
This paper conceives and implements an activity analysis method as a tool to be used for workflow visual verification and mining. One of the recent issues in the workflow and business process literature is to refine and to improve the deployed workflows and business processes. The activity analysis method proposed in this paper provides a way to fine a set of activities being directly affected by the specific activity that a user tries to change its properties. I would strongly believe that the method can be a useful solution for the dynamic changes and visual verifications problems of workflow models as well as the workflow process mining problems. Finally, to prove the possibility of the proposed method and its applicability, we apply to a workflow model of the electronic approval system run by a real corporation.
This paper proposes a control path analysis mechanism to be used in the workflow mining framework maximizing the workflow traceability and re discoverability by analyzing the total sequences of the control path perspective of a workflow model and by rediscovering their runtime enactment history from the workflow log information. The mechanism has two components One is to generate the total sequences of the control paths from a workflow mode by transforming it to a control path decision tree, and the other is to rediscover the runtime enactment history of each control path out of the total sequences from the corresponding workflow's execution logs. Eventually, these rediscovered knowledge and execution history of a workflow model make up a control path oriented intelligence of the workflow model. which ought to be an essential ingredient for maintaining and reengineering the qualify of the workflow model. Based upon the workflow intelligence, it is possible for the workflow model to be gradually refined and finally maximize its qualify by repeatedly redesigning and reengineering during its whole life long time period.
With the development of the big data environment, public institutions also have been providing big data infrastructures. Public data is one of the typical examples, and numerous applications using public data have been provided. One of the cases is related to the employment insurance. All employers have to make contracts for the employment insurance for all employees to protect the rights. However, there are abundant cases where employers avoid to buy insurances. To overcome these challenges, a data-driven approach is needed; however, there are lacks of methodologies to integrate, manage, and analyze the public data. In this paper, we propose a methodology to build a predictive model for identifying whether employers have made the contracts of employment insurance based on public data. The methodology includes collection, integration, pre-processing, analysis of data and generating prediction models based on process mining and data mining techniques. Also, we verify the methodology with case studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.