• Title/Summary/Keyword: 프랙탈 해석

Search Result 69, Processing Time 0.034 seconds

Dual-porosity fractal model with parallel fracture and blocky fracture flow (판상체 및 입방체 이중공극 프랙탈 모델의 지하수위 거동)

  • 함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.127-130
    • /
    • 1998
  • 이 연구에서는 부정류의 판상체 이중공극 프랙탈 모델과 입방체 이중공극 프랙탈 모델의 지하수위 거동을 비교 연구하였다. 균열내 지하수위 거동 해석은 판상 이중공극 프랙탈 모델은 Hmm과 Bidaux(1996)을 이용하였고 입방체 이중공극 프랙탈 모델의 경우에는 입방체블록과 같은 크기의 구상체 블록으로 간주하여 지하수위 거동을 해석하였다. 그리고 0.5, 1, 1.5, 2, 2.5, 3차원에 대해서 판상체 이중공극 프랙탈 모델과 입방체 이중공극 프랙탈 모델의 이론적인 수위강하 곡선을 작성하여 비교, 분석하였다. 부정류의 판상체 이중공극 프랙탈 모델과 입방체 이중공극 프랙탈 모델은 기반암내 균열의 분포가 프랙탈망을 형성하고, 균열과 매트릭스 블록이 거의 수평의 층상으로 발달하는 경우와 균열이 수평방향과 수직방향으로 발달하면서 매트릭스 블록이 입방체를 이루는 경우에 적용될 수 있다.

  • PDF

Brownian Coagulation of Fractal Agglomerates in the Free-molecule Regime (자유분자영역에서 프랙탈 입자의 브라운 응집에 관한 연구)

  • 박성훈;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.395-396
    • /
    • 2001
  • 고온의 산업공정에서 발생하는 에어로졸 입자들은 많은 기본입자(primary particle)들로 이루어진 불규칙한 사슬구조를 가진다 (Matsoukas and Friedlander, 1991). 이러한 비구형 프랙탈 입자들의 거동은 구형 입자들과 비교할 때 큰 차이를 보인다. 프랙탈 입자들의 부피는 충돌반경의 거듭제곱으로 나타낼 수 있으며, 프랙탈 차원이라 불리는 그 지수는 1에서 3 사이의 값을 가진다. 자유분자영역에서의 브라운 응집에 대한 해석해는 Lee et al.(1990)에 의해 제시된 바 있으나, 이는 구형입자를 가정한 결과였고, 비구형 프랙탈 입자의 거동을 해석하려 할 때는 이로 인한 오차가 발생하게 된다. (중략)

  • PDF

Crack Growth Behavior of Cement Composites by Fractal Analysis (시멘트 복합체의 균열성장거동에 관한 프랙탈 해석)

  • 원종필;김성애
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • The fractal geometry is a non-Euclidean geometry which discribes the naturally irregular or fragmented shaps, so that it can be applied to fracture behavior of materials to investigate the fracture process. Fractal curves have a characteristic that represents a self-similarity as an invariant based on the fractal dimension. This fractal geometry was applied to the crack growth of cementitious composites in order to correlate the fracture behavior to microstructures of cemposite composites. The purpose of this study was to find relationships between fractal dimensions and fracture energy. Fracture test was carried out in order to investigate the fracture behavior of plain and fiber reinforced cement composites. The load-CMOD curve and fracture energy of the beams were observed under the three point loading system. The crack profiles were obtained by the image processing system. Box counting method was used to determine the fractal dimension, D$_{f}$. It was known that the linear correlation exists between fractal dimension and fracture energy of the cement composites. The implications of the fractal nature for the crack growth behavior on the fracture energy, G$_{f}$ is appearent.ent.

The Analytical Derivation of the Fractal Advection-Diffusion Equation for Modeling Solute Transport in Rivers (하천 오염물질의 모의를 위한 프랙탈 이송확산방정식의 해석적 유도)

  • Kim, Sang-Dan;Song, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.889-896
    • /
    • 2004
  • The fractal advection-diffusion equation (ADE) is a generalization of the classical AdE in which the second-order derivative is replaced with a fractal order derivative. While the fractal ADE have been analyzed with a stochastic process In the Fourier and Laplace space so far, in this study a fractal ADE for describing solute transport in rivers is derived with a finite difference scheme in the real space. This derivation with a finite difference scheme gives the hint how the fractal derivative order and fractal diffusion coefficient can be estimated physically In contrast to the classical ADE, the fractal ADE is expected to be able to provide solutions that resemble the highly skewed and heavy-tailed time-concentration distribution curves of contaminant plumes observed in rivers.

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

Fractal calculus for water pollutant diffusion modeling (하천 오염물질 이송확산 모의에서의 프랙탈 계산기법)

  • Kim, Sangdan;Song, Mee Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.552-556
    • /
    • 2004
  • 프랙탈 이송확산방정식은 정수 차수의 미분연산자로 구성된 고전적인 이송확산방정식과 비교하여 프랙탈 차수의 미분연산자로 구성된 보다 상위개념의 방정식으로써 정의된다. 지금까지의 프랙탈 이송확산방정식은 추계학적인 기법을 동원하여 푸리에-라플라스 공간에서 주로 해석되었으나, 본 연구에서는 실제 공간에서 유한차분개념을 도입하여 보다 직접적으희 하천에서의 오염물 이송확산에 관한 지배방정식을 유도하였다. 이러한 개념의 유도방법은 프랙탈 차수 및 관련 확산계수의 물리적인 추정에 관한 실마리를 제공할 수 있다. 고전적인 이송확산방정식과는 달리 프랙탈 이송확산방정식은 실제 하천에서 관측되는 오염물의 시간-농도 분포곡선의 왜곡현상과 분포곡선의 전후방부 농도를 보다 실제에 가깝게 모의할 수 있을 것으로 기대되어진다.

  • PDF

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting One Dimensional Fractal Surface Using the Monte-Carlo Moment Method (몬테칼로 모멘트 방법을 이용한 1차원 프랙탈 완전도체 표면에서의 전자파 산란 해석)

  • 최동묵;김채영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.12
    • /
    • pp.566-574
    • /
    • 2002
  • In this paper, the scattered field from a perfectly conducting fractal surface by the Monte-Carlo moment method was computed. An one-dimensional fractal surface was generated by using the fractional Brownian motion model. Back scattering coefficients are calculated with different values of the spectral parameter(S$\_$0/), and fractal dimension(D) which determine characteristics of the fractal surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 80, 2048, and 64L, respectively. In order to verify the computed results these results are compared with those of small perturbation methods, which show good agreement between them.

The Analysis of Terrain and Topography using Fractal (프랙탈 기법에 의한 지형의 특성분석)

  • Kwon, Kee-Wook;Jee, Hyung-Kyu;Lee, Jong-Dal
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.6
    • /
    • pp.530-542
    • /
    • 2005
  • In this study, GIS method has been used to get fractal characteristics. Using the projected area and surface area, 2 dimensional fractal characteristic of terrain was found out. Correlation of fractal dimension and mean slope were also checked over. Results are as below. 1) To get a fractal dimension, the method which is using the surface area is also directly proportional to complexity of the terrain as other fractal dimension. 2) Fractal dimensions using the surface area, that is proposed in this thesis are carried out as below : Uiseong : $2.02{\sim}2.15$ Yeongcheon : $2.10{\sim}2.24$. These values are in a range of fractal $2.10{\sim}2.20$ dimensions which has known. 3) Correlation of mean slope and fractal dimension is diminished about 30% in a region which is more than $25^{\circ}$ of mean slope. So, in this region using the fractal dimension method is better than using the mean slope. From this study, on formula using the projected area and surface area is still good to get a fractal dimension that has been found. But to confirm this method the region of research should be wider and be set up the correlation of mean slope, surface area and fractal dimension. It can be applicable to restoration of terrain and traffic flow analysis in the future research.

  • PDF

Tool Wear Monitoring using Time Series Model and Fractal Analysis (시계열 모델과 프랙탈 해석을 이용한 공구마멸 감시)

  • 최성필;강명창;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.69-73
    • /
    • 1996
  • Tool wear monitoring is very important aspect in metal cutting because tool wear effects quarity and precision of workpiece, tool life etc. In this study we detected force signal through tool dynamometer in turning and using it we conducted 6th AR modeling and fractal analysis. Finally the back-propagation model of the neural network is utilized to monitor tool wear and features are extracted through AR model and fractal analysis.

  • PDF