• Title/Summary/Keyword: 풍공학

Search Result 224, Processing Time 0.021 seconds

풍공학에 있어서의 전산해석과 풍동실험

  • 최창근;김윤석
    • Computational Structural Engineering
    • /
    • v.4 no.1
    • /
    • pp.36-41
    • /
    • 1991
  • Structure와 flow, 크게는 인간생활과 자연생활을 대상으로 하는 풍공학에 있어서 가장 중요한 해석방법으로써 전산해석과 풍동실험을 들 수 있다. 금세기 후반에 들어 컴퓨터의 출현 모든 공학분야의 발전에 크게 기여하고 있다는 것은 모두가 인지하는 사실이다. 풍공분야에 있어서도 컴퓨터는 데이타의 처리를 양적으로는 물론 질적으로도 크게 향상시켜주었고 유동장에 구조물이 존재할 때 그 주위를 통과하는 유체에 대한 기존의 사고방식에 새로운 변화를 주고 있다. 그러나 유체라는 것은 매우 복잡하여 이상화된 이론적 취급만으로는 충분히 규명될 수 없는 점도 있고 또한, 이론의 결과를 실제에 이용하기 위해서는 그것을 확인할 필요가 있기 때문에 풍동실험을 하게 된다. 최근 컴퓨터의 발달과 계산기술의 향상에 큰 성과를 올리고 있으나, 구조물의 유체력탄성거동시에 구조물에 미치는 비정상유체력의 평가에는 풍동실험을 이용하는 것이 현재의 풍공학의 주류라 할 수 있다. 본 고에서는 현재 풍공학에서 다루어지고 있는 주요 토픽 중 몇가지를 컴퓨터를 이용한 수치해석적 입장과 풍동을 통한 실험적 입장에서 고찰해 보고자 한다.

  • PDF

Impact of the Aerodynamic Characteristics of Twin Buildings on Wind Responses (트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The wind responses of twin buildings are determined by the characteristics of wind loads and the dynamic characteristics of the structural systems of the buildings. In this study, the characteristics of wind pressure that influence wind responses were identified for two different spacings between the twin buildings using a wind tunnel test and the proper orthogonal decomposition (POD) method. Structural dynamic characteristics were also identified using 3D structural system modeling. The double modal transformation method was utilized to evaluate the characteristics of wind pressure for across-wind and along-wind conditions and the effect of the dynamic characteristics of each structure on the wind responses. The channeling and vortex effects were identified through the POD method. Across-wind loads were significantly affected by the spacings between the twin buildings, whereas along-wind loads were minimally affected. Similarly, while using the double modal transformation method, a significant difference was noticed in case of the cross-participation coefficients in the across-wind direction condition for the different spacings between the buildings; however, the along-wind direction condition showed negligible difference. Therefore, the spacing between the two buildings plays a more important role in across-wind responses compared to along-wind responses.

Wind Effect on Tidal Currents in the Neighborhood of Haeundae Beach (해운대 해수욕장 전면 해상의 조류에 미치는 바람효과)

  • Lee, Moon-Ock;Lee, Jong-Sup;Kim, Byeong-Kuk;Kim, Jong-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.34-46
    • /
    • 2010
  • We observed tidal currents throughout all four seasons in 2007 at a single station, located 1.6km off Haeundae Beach and compared these current data with wind data. The direction of seasonal wind represented a similarity between the winds at sea and on land but the speed of wind at sea was almost three times stronger than the wind on land. In addition, the wind at sea turned out to considerably affect on tidal currents, particularly from late summer to autumn. On the other hand, the thickness of Ekman Layer, indicating a limitation of wind influence, was estimated to be 31.8 m on average, suggesting that the entire water column is under the influence of wind. Therefore, we are required to consider the wind stress into the analysis of tidal currents for the prevention of the loss of sand from Haeundae Beach.

Evaluation on Structural Stability of Railway Level Crossing System using Rubber Panel by High Speed Train Gust (고무보판 패널 철도건널목 시스템의 고속열차 풍하중에 대한 구조 안정성 분석)

  • Choi, Jung-Youl;Kim, Sang-Jin;Shin, Tae-Hyoung;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.355-360
    • /
    • 2019
  • In this study, the structural stability of the railway level crossing system using rubber panel for high speed lines was investigated by applying the specification for wind load conditions (Train gust) of high speed train (300km/h and 360km/h). A finite element analysis using three-dimensional modeling was carried out by applying the field conditions that was installed with the complicated configuration of the rubber plate panel system. As a result of this study, the structural stability of the rubber plate panel system for high speed train gust was analytically verified.

Comparison of KMA Operational Model RDAPS with QuikSCAT Sea Surface Wind Data (기상청 현업 모델 RDAPS와 QuikSCAT 해상풍 자료의 비교)

  • You, Sung-Hyup;Cho, Jae-Gab;Seo, Jang-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2007
  • This study compared the sea surface wind pattern between model results from KMA operational model (RDAPS) and observational results from QuikSCAT in the 2005-2006 year. The mean spatial distributions of sea surface wind show the prominent seasonal patterns of summer and winter season adjacent to Korean Peninsular. The statistical analysis also shows well seasonal variation of sea surface wind patterns between model and observation results. The BIAS value represents less than -0.5 m/s and -1 m/s in summer and winter seasons, respectively. The spatially averaged correlation coefficient shows larger than 0.7 and 0.8 in summer and winter seasons, respectively. The correlation coefficient of winter season shows higher value than that of summer season in the comparison between model and observation. This results show that the RDAPS model simulate well strong sea surface wind in winter season rather than weak sea surface wind in summer season.

Design Method to Control Wind-Induced Vibration of High-Rise Buildings Using Resizing Algorithm (재분배기법을 이용한 고층건물의 풍응답 가속도 조절 설계기법)

  • Seo, Ji-Hyun;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.465-473
    • /
    • 2010
  • As increase of height and slenderness of buildings, serviceability design criteria such as maximum lateral drift and wind-induced vibration level play an important role in structural design of high-rise buildings. Especially, wind-induced vibration is directly related to discomfort of occupants. However, no practical algorithm or design method is available for structural designers to control the acceleration level due to wind. This paper presented a control method for wind-induced vibration of high-rise buildings using the resizing algorithm. The level of vibration due to wind is calculated by well known estimation rules of ASCE 7-02, NBCC 95, SAA83, and Solari method. Based on the fact that the level of wind-induced vibration is inversely proportional to the magnitude of natural periods of buildings, in the design method, natural periods of a high-rise building are modified by redistribution of structural weight according to the resizing algorithm. The design method is applied to wind-induced vibration control design of real 42-story residential building and evaluated the efficiency and effectiveness.

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

Development of Probabilistic Wind Load Models (국내 풍하중의 확률적 모형 개발)

  • 김상효;배규웅;박홍석
    • Computational Structural Engineering
    • /
    • v.3 no.2
    • /
    • pp.109-115
    • /
    • 1990
  • The probabilistic characteristics of wind loads have been analyzed using statistical data on wind speeds, pressure coefficient, exposure coefficient, and gust factor. The wind speed data collected at 25 nationwide weather stations have been modified to be consistent in measuring height, exposure condition as well as averaging time. Having performed Monte Carlo simulation for various heights and site conditions, the statistical models of wind loads were determined, in which Type-I extreme value distribution has been applied. The models also incorporate a reduction factor of 0.85 to account for the reduced probability that the maximum wind speed will occur in a direction most unfavorable to the response of structure.

  • PDF