• Title/Summary/Keyword: 풀화재

Search Result 57, Processing Time 0.03 seconds

An Experimental Study of Fire Suppression Using a Water Mist in a Compartment (물분무를 이용한 화재제어에 관한 실험적 연구)

  • Kim, Sung-Chan;Park, Hyun-Tae;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.367-373
    • /
    • 2003
  • The present study investigates the fire suppression characteristics using a water mist fire suppression system. The fire extinguishing times are measured for various fire sources, fuel types, and different total flooding rates of water mist. Pool fire with hydrocabon fuel is successfully extinguished within a minute under the operating conditions of the water mist system. Two different regimes of the smoke layer cooling are observed, such as rapid and slow cooling processes. The regimes are divided by threshold time which is calculated with auto-correlation function. The threshold time for the initial cooling decreases with increasing water flow-rates and fire sources. These initial cooling effects play an important role in preventing the occurance of flashover fire by the initial fire suppression.

An Experimental Study of Critical Velocity in Sloping Tunnel Fires (경사 터널내 화재시 임계속도에 관한 실험적 연구)

  • 이성룡;김충익;유홍선;김혁순;전명배
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2004
  • In this study, reduced-scale experiments were conducted to analyze an effect of tunnel slope on critical velocity. The 1/20 scale experiments were carried out under the Froude scaling using ethanol pool fire. Square pools ranging from 2.47 to 12.30㎾ were used experiments. Critical velocity varied with one-fourth power of the heat release rate. As the slope of the tunnel increases the critical velocity comes to be fast due to the increase of the chimney effect.

An Experimental Study on the Critical Velocity Considering the Slope in Tunnel Fire (경사터널내 화재 발생시 경사도가 임계속도에 미치는 영향에 관한 연구)

  • Kim, Seung-Ryoul;Jang, Yong-Jun;Ryou, Hong-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • An experimental study has been conducted to investigate the effect of tunnel slope on critical velocity by using the model funnel of the 1/20 reduced-scale applying the Floods scaling law. the square liquid pool burners were used for methanol, acetone and n-heptane fires. tunnel. Tunnel slopes varied as five different degrees $0^{\circ}$, $2^{\circ}$, $4^{\circ}$, $6^{\circ}$ and $8^{\circ}$. The mass loss rate and the temperatures are measured by a load celt and K-type thermocouples for tunnel slope. Present study results in bigger the critical velocity than the research of Atikinson and Wu using the propane burner. Therefore, when estimating the critical velocity in slope tunnel, the variations of the heat release rate is an important factor. The reason is the ventilation velocity directly affects variation of heat release rate when slope tunnel fire occurred.

Characteristics of Smoke Propagation in Railway Tunnels with Rescue Station (구난역을 갖는 철도 터널 내부의 연기거동 특성)

  • Jang, Won-Cheol;Kim, Dong-Woon;Lee, Seong-Hyuk;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.13-18
    • /
    • 2009
  • The main objective of the present study is to investigate smoke propagation in railway tunnels with rescue stations. In particular, based on measurement of HRR (heat release rate) for pool fires formed at different locations, the influence of fire source location on smoke behavior is examined. The fuel is n-heptane and pool fires are generated with a square length 4cm. With the use of MVHS (Modified Volumetric Heat Source) model for fire source, extensive numerical simulations are performed by using the commercial code FLUENT (Ver.6.3) Predicted smoke temperatures and smoke propagation are discussed. From numerical predictions, it is found that ventilation systems may be necessary in the railway tunnels because the smoke moves along the tunnel, and consequently it enters the non-accident tunnel. It is also confirmed that the cross-passage and fire protection wall systems contribute to control the smoke.

The Study of Development and Calibration for the Real Scale Fire Test Facility (실대형화재평가장치의 개발 및 안정화에 관한 연구)

  • Yoo, Yong-Ho;Kim, Heung-Youl;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The reduced scale fire test provides basic data but it is not enough to analysis real fire problem directly because there is no exact analogy theory between a real fire and the reduced scale model. Therefore, we have developed the 10 MW large scale calorimeter in order to real scale fire test. This advanced large scale calorimeter used for physical properties such as a heat release rate, based upon consumption of $O_2$ method. Using the heptane pool fire, we carried out the calibration in order to evaluation for heat release rate. It is approve that this facility has the reliability and it is capable of applying to the advance fire research in the future.

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

A Study of Smoke Movement in Tunnel Fire with Natural Ventilation (자연 배기 터널에서의 연기 거동에 관한 연구)

  • Kim, Sung-Chan;Lee, Sung-Ryong;Kim, Choong-Ik;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.976-982
    • /
    • 2002
  • In this study, smoke movement in tunnel fire with natural ventilation shaft has been investigated with various size of fire source. Gasoline pool fire with different size of diameter - 73mm, 100mm, 125mm and 154mm - was used to describe fire source. Experimental data is obtained with 1/20 model tunnel test and its results are compared with numerical results. The computation were carried out using FDS 1.0 which is a field model of fire-driven now. Temperature profiles between measured and predicted data are compared along ceiling and near the ventilation shaft. Both results are in good agreement with each other. In order to evaluating a safe egress time in tunnel fire, horizontal smoke front velocity was measured in model tunnel fire tests and those are compared with numerical results. According to the presence or absence of natural ventilation shaft, ventilation effect are estimated quantitatively. Finally, this paper shows that computational fluid dynamics(CFD) is applicable to predict fire-induced flow in tunnel.

Combustion Characteristics of Pool Fire by Height of Fire Source (화점높이 변화에 따른 Pool Fire의 연소특성)

  • Park, Hyung-Ju;Cha, Jong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4671-4676
    • /
    • 2010
  • This study is intended to understand flame behavior of the pool fire by height of fire source. Liquid fuels were methanol and n-Heptane which are used in many studies of pool fire. Size of vessel was $100mm{\times}100mm{\times}50mm$ and the vessel was made by stainless steel. Combustion time, mass loss rate, flame temperature, flame height and air entrainment rate from the outside to flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that combustion characteristics of pool fire was decreased according to increase of height of fire source because entrainment volume of relative cold air was increased from the outside to flame.

Development of an Inert Gas Water Mist System -A Numerical Study on Ventilation of the Fire Test Room- (불활성가스 미분무소화설비의 개발 -화재시험실의 급기에 관한 수치연구-)

  • Park, Woe-Chul;Jeong, Lee-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • A Numerical study was carried out for a propane gas pool fire in the fire test room of $2.5m{\times}2.0m{\times}2.5m$ for testing a inert gas water mist system, to investigate a possible under-ventilation in the fire test room. For the fire sizes of 60 kW and 120 kW, changes in the temperature and CO concentration with and without a window were investigated. It was confirmed that the influence of the window on the distributions of temperature and CO concentration was small in the two fire sizes, and hence the under-ventilation was not occurred in the room.

  • PDF

Examination on Fire Extinguishing Performance of Full Cone and Hollow Cone Twin-fluid Atomizers: Effects of Supply Gas and Water Mist (중실원추형 및 중공원추형 2유체 미립화기의 화재 소화 성능 검토: 공급 기체와 미분무 영향)

  • Kim, Dong Hwan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.28-36
    • /
    • 2019
  • In the present study, the effects of supply gas and water mist on the heptane pool fire extinguishing performance were investigated using the full cone and hollow cone twin-fluid atomizers. Air or nitrogen of 30 lpm (Liter per minute; L/min) was used as the supply gas, and the experiments were conducted under the water flow rate conditions of 0 lpm (i.e., discharge of air or nitrogen only) and 0.085 lpm (i.e., discharge of water mist with supply gas). Experimental results confirmed that the use of water mist discharge with the supply gas and full cone spray pattern reduced the fire extinguishing time as compared to that of only supply gas discharge and hollow cone spray pattern. In addition, for the discharge of water mist using the full cone twin-fluid atomizer, water mist significantly affected fire extinguishing performance, whereas the effect of the supply gas was less pronounced. On the other hand, for the discharge of water mist using the hollow cone twin-fluid atomizer, the fire extinguishing time was remarkably reduced by the supply of nitrogen, as compared with that of air, indicating that the supply gas as well as water mist can significantly affect fire extinguishing performance.