경사 터널내 화재시 임계속도에 관한 실험적 연구

An Experimental Study of Critical Velocity in Sloping Tunnel Fires

  • 발행 : 2004.03.01

초록

본 연구에서는 터널 화재 시 임계속도에 대한 터널 경사의 영향을 파악하기 위하여 축소모형 실험을 실시하였다. Froude 상사를 사용하여 1/20로 축소된 모형터널에서 실험을 실시하였으며, 가연 물질로는 에탄올 사용하였다. 정사각형 풀을 사용하였으며 발열량은 2.47∼12.30㎾이다. 임계속도가 발열량의 l/4승에 비례하여 증가하였다. 터널 경사가 증가할수록 굴뚝효과로 인해 연기의 유동속도가 증가하여 임계속도가 증가하였다.

In this study, reduced-scale experiments were conducted to analyze an effect of tunnel slope on critical velocity. The 1/20 scale experiments were carried out under the Froude scaling using ethanol pool fire. Square pools ranging from 2.47 to 12.30㎾ were used experiments. Critical velocity varied with one-fourth power of the heat release rate. As the slope of the tunnel increases the critical velocity comes to be fast due to the increase of the chimney effect.

키워드

참고문헌

  1. Bundesamt fur Strassen : Richtlinie Systemwahl, 'Dimensionierung und Betrieb von Tunnelluftungsanlagen', Dragt V5.0(2000)
  2. K. Opstad, P. Aune, and J. E. Henning, 'Fire Emergency Ventilation Capacity for Road Tunnels with Considerable Slope', 9.1CAVVT, Aosta, pp.535-543(1997)
  3. I. Riess, M. Bettelini, and R. Brandt, 'Sprint - A Design Tool for Fire Ventilation', 10.ISAVVT, Boston, pp.629-637(2000)
  4. I. Riess, M. Bettelini, and R. Brandt, 'Smoke Extraction in Tunnels with Considerable Slope', 4th International Conference Safety in Road and Rail Tunnels, Madrid, pp.503-512(2001)
  5. G. T. Atkinson and Y. Wu, 'Smoke Control in Sloping Tunnels', Fire Safety Journal, Vol. 27, pp.335-341(1996) https://doi.org/10.1016/S0379-7112(96)00061-6
  6. Y. Wu and M. Z. A. Bakar, 'Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation Systems - A Study of the Critical Velocity", Fire Safety Journal, Vol. 35, p.363-390(2000) https://doi.org/10.1016/S0379-7112(00)00031-X
  7. X. C. Zhou and J. P. Gore, 'Air Entrainment flow Field Induced by a Pool Fire', Combustion and Flame, Vol. 100, No. 1, pp.52-60(1995) https://doi.org/10.1016/0010-2180(94)00043-R
  8. D. Drysdale, 'An Introduction to Fire Dynamics', A Wiley-Interscience Publication(1985)
  9. E. J. Weckman and A. B. Strong, 'Experimental Investigation of the Turbulence Structure of Medium- Scale Methanol Pool Fires, Combustion and Flame, Vol. 105, No.3, pp.245-266(1996) https://doi.org/10.1016/0010-2180(95)00103-4
  10. V. Babrauskas, 'Burning Rates', The SFPE Handbook of Fire Protection Engineering, 2-1 to 2-15, USA(1998)
  11. A. Tewarson, 'Smoke Point Height and Fire Properties of Materials', NIST-GCR-88-555, National Institute of Standards and Technology, Available from National Technical Information Services, Springfield, VA 22161, USA(1998)
  12. K. B. Edward, E. N. Harold, and D. E. David, 'Simplified Fire Growth Calculation', Fire Protection Handbook, 18th Edition, NFPA FPH1897, Section 11, Chapter 10(1997)