• Title/Summary/Keyword: 푸아송비

Search Result 15, Processing Time 0.021 seconds

Evaluation of Indentation Fracture Toughens in Brittle Materials Based on FEA Solutions (유한요소해에 기초한 취성재료의 압입파괴인성평가)

  • Hyun, Hong Chul;Lee, Jin Heang;Felix, Rickhey;Lee, Hyungyil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1503-1512
    • /
    • 2013
  • In this study, we proposed an indentation evaluation method for fracture toughness using cohesive finite element simulations. First, we examined the effect of material properties (yield strain, Poisson's ratio, and elastic modulus) on crack size during Vickers indentation and then generated a regression formula that explains the relations among fracture toughness, indentation load, and crack size. We also proposed another indentation formula for fracture toughness evaluation using the contact size a and E/H (H: hardness). Finally, we examined the relation between the crack size and the indenter shapes. Based on this, we can generate from the formula obtained using the Vickers indenter a formula for an indenter of different shapes. Using the proposed method, fracture toughness is directly estimated from indentation data.

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Measurements of Radial In-plane Vibration Characteristics of Piezoelectric Disk Transducers (원판형 압전 변환기의 면내 방사 진동 특성 측정)

  • Kim, Dae Jong;Oh, Se Hwan;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.13-23
    • /
    • 2015
  • The paper experimentally deals with the radial in-plane vibration characteristics of disk-shaped piezoelectric transducers. The radial in-plane motion, which is induced due to Poisson's ratio in the piezoelectric disk polarized in the thickness direction, was measured by using an in-plane laser vibrometer, and the natural frequencies were measured by using an impedance analyzer. The experimental results have been compared with theoretical predictions obtained by simplified theoretical and finite-element analyses. It appears that the fundamental mode of a piezoelectric disk transducer is a radial mode and its radial displacement distribution from the center to the perimeter is not monotonic but shows maximum slightly apart from the perimeter. The theoretically-calculated fundamental frequencies agree well with the finite-element results for small thickness-to-diameter ratio, and they are accurate within 7 % error for the ratio up to 0.4.

Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation (열변형 해석을 위한 허니컴 샌드위치 평판의 열 및 탄성 물성치 예측에 관한 연구)

  • Hong, Seok Min;Lee, Jang Il;Byun, Jae Ki;Choi, Young Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties.

Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades (풍력 발전 블레이드 복합재 GFRP의 인장 특성의 온도 의존성)

  • Huh, Yong-Hak;Kim, Jong-Il;Kim, Dong-Jin;Lee, Gun-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1053-1057
    • /
    • 2012
  • In this study, the temperature-dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial ($0^{\circ}$) and triaxial ($0/{\pm}45^{\circ}$) laminate composite plates were measured at four different testing temperatures-room temperature, $-30^{\circ}C$, $-50^{\circ}C$, and $60^{\circ}C$. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.