• Title/Summary/Keyword: 푸리에 변환 적외분광법

Search Result 6, Processing Time 0.028 seconds

Cement Paste Hardened Body with High Temperature Exposure Time Fourier Transform Infrared Spectroscopy (고온 노출 시간에 따른 시멘트 페이스트 경화체의 푸리에 변환 적외분광 분석)

  • Kim, Min-Hyouck;Cho, Hyeon-Seo;Lee, Gun-cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.120-121
    • /
    • 2019
  • In this study, FT-IR analysis was performed by exposing cement paste to high temperature in order to characterize the change of hydration behavior of concrete structure damaged by fire accident. As the holding time increased, the Al-O vibration region increased due to the increase of Si-O symmetric Ca2(SiO4) and Brownilerite, and the OH stretching region tended to increase due to thermal decomposition of Ca(OH)2.

  • PDF

A Study of the characteristics of NOx measurement and analysis methods of the SCR system for ships (선박용 SCR 시스템 NOx 측정 및 분석 방식의 특성 연구)

  • Kim, Sung-Yoon;Lee, Young-Ho;Kim, Min;Park, Sam-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.387-392
    • /
    • 2015
  • A method for measuring and analyzing the $NO_x$ in ships is described in $NO_x$ Technical Code 2008. The analysis device, as required by the Code, has been to use a Chemi-luminescence detection method or Heated Chemi-luminescence detection. on the other hand, selective catalytic reduction using $NH_3$ as a reducing agent has an interference effect on the analyzer, and causes measurement error. In this study, the Chemi-luminescence detection method was examined according to how it affects the concentration of $O_2$, CO, $SO_2$, $NH_3$. Fourier transform infrared spectrometry analysis equipment and measurement methods were compared. In order to confirm the effect of the physical interference of the measuring device, it was confirmed by decomposing a measuring device. Consequently, white precipitate and moisture were generated inside the chemiluminescence detection system and I found that affecting interference. The influence of interference highlights the need to consider the minimized $NO_x$ measurement method.

Preparation of Spherical TiO2 Nanoparticles Using Amphiphilic PCZ-r-PEG Random Copolymer Template Membrane (양친성 PCZ-r-PEG 랜덤 공중합체 분리막을 이용한 구형 이산화티타늄 나노입자의 제조)

  • Lee, Jae Hun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • Amphiphilic PCZ-r-PEG random copolymer assisted solvothermal process is used to prepare mesoporous $TiO_2$ microspheres generated from nanoparticles by self-assembly method. Synthesized PCZ-r-PEG is characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). The mesoporous $TiO_2$ are prepared by PCZ-r-PEG, glucose, water in tertrahydrofuran solution at $150^{\circ}C$ for 12 h and the $TiO_2$ microspheres are calcined at $550^{\circ}C$ for 30 min to further crystallize and organic residue are removed. Morphology and crystallization phase is characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) respectively. The mesoporous $TiO_2$ crystallized in pure anatase phase with diameter of $300{\pm}20nm$.

Highly-permeable SBS/UiO-66 Mixed Matrix Membranes for CO2/N2 Separation (CO2/N2 분리를 위한 SBS/UiO-66 기반의 고투과성 혼합 매질 분리막)

  • Kim, Young Jun;Moon, Seung Jae;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.319-325
    • /
    • 2020
  • In this study, we developed mixed matrix membranes by blending thermoplastic elastomer, i.e. polystyreneblock-polybutadiene-block-polystyrene (SBS) block copolymer with the synthesized UiO-66 particles for CO2/N2 gas separation. To investigate the effect of UiO-66 particles in the SBS matrix, we prepared different mixed matrix membranes (MMMs) by varying the mass ratio of SBS and UiO-66 in the blend. To fabricate well-dispersed UiO-66, the SBS/UiO-66 mixture was sonicated and stirred thoroughly. The physico-chemical properties of prepared membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM). The gas separation performance was measured by time-lag method. The permeability of the MMMs increased significantly as the content of UiO-66 increased, but the CO2/N2 selectivity did not decrease significantly. The membranes containing 20% of UiO-66 particles showed the best performance with the CO2 permeability and CO2/N2 selectivity of 663.8 barrer and 13.3, respectively. This result showed performance closer to upper bound than pure SBS membrane in the Robeson plot, as the added UiO-66 particles did not significantly sacrifice selectivity and more than doubled gas permeability.

Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid (SBS-g-POEM 공중합체, ZIF-8, 이온성 액체에 기반한 고투과성 혼합 매질 분리막)

  • Kang, Dong A;Kim, Kihoon;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.44-50
    • /
    • 2019
  • In this paper, we developed mixed matrix membranes (MMMs) consisting of SBS-g-POEM block-graft copolymer, ionic liquid (EMIMTFSI) and ZIF-8 nanoparticles to separate a $CO_2/N_2$ gas pair. The SBS-g-POEM is a rubbery block-graft copolymer synthesized through low-cost free-radical polymerization. The EMIMTFSI was dissolved into the SBS-g-POEM matrix and solution synthesized ZIF-8 nanoparticles were also dispersed into the copolymer matrix. The physico-chemical properties of manufactured membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD), which showed that the components were compatible with each other. The gas separation performance was confirmed by time-lag measurements showing $CO_2$ permeability of 537.0 barrer and $CO_2/N_2$ selectivity of 15.2. The result represents the EMIMTFSI and ZIF-8 nanoparticles improves the gas permeability more than two-times, without significantly sacrificing the $CO_2/N_2$ selectivity.

Hyaluronic Acid Enhances the Dermal Delivery of Anti-wrinkle Peptide via Increase of Stratum Corneum Fluidity (히알루론산의 각질 유동성 향상을 통한 주름 개선 펩타이드 피부 흡수 촉진)

  • Kim, Yun-Sun;Kim, Daehyun;Kim, Yumi;Park, Sun-Gyoo;Lee, Cheon-Koo;Kang, Nae-Gyu
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.4
    • /
    • pp.447-453
    • /
    • 2018
  • Acetyl hexapeptide 8 (AH8) is a synthetic peptide for anti-wrinkle cosmetics ingredient. It was developed as a mimetic of botox, patternd after N -terminal end of the protein synatosomal-associated protein 25 (SNAP25), a substrate of botulinum toxin. While AH8 has good efficacy and safety profiles, the permeation through the skin is poor. Therefore, we tried to enhance the transdermal delivery of AH8 by using of hyaluonic acid (HA), a linear polysaccharide of N-acetyl glucosamine and glucuronic acid. To investigate the effect of HA on AH8 penetration, we analyzed paraffin sections of $Micropig^{(R)}$ skin. Fluorescence labeled AH8 was applied to micropig skin with or without HA. The absorption of AH8 was limited to the stratum corneum (SC) without HA. On the other hand, AH8 penetrated to the dermis with HA. Especially, low molecular weight HA (5 kDa) was most efficient compared to 500 kDa HA and 2000 kDa HA. Experiments using fourier-transform infrared (FTIR) spectroscopy revealed that lower molecular weight HA had a tendency to increase the fluidity of the SC lipids more, which means enhancing the skin penetration. Therefore, HA could be expected to enhance the anti-wrinkle effect of AH8.