• Title/Summary/Keyword: 표면 패턴

Search Result 772, Processing Time 0.044 seconds

Characteristics of Soy Protein Hydrolysates with Enzymes Produced by Microorganisms Isolated from Traditional Meju (전통 메주 유래 미생물이 생산하는 효소에 의한 대두단백 분해물의 특성)

  • 정낙현;신용서;김성호;임무현
    • Food Science and Preservation
    • /
    • v.10 no.1
    • /
    • pp.80-88
    • /
    • 2003
  • In order to establish the enzymatic hydrolysis system improving of taste and flavor in the preparation of soy protein hydrolysates using the enzymes with excellent hydrolytic ability and different hydrolysis pattern of soy protein, Degree of hydrolysis(DH) and surface hydrophobicity under the optimal conditions of enzyme reaction, hydrolysis patterns by the SDS electrophoresis and sensory evaluation of soy protein hydrolysates by enzyme reactions were investigated. Four enzyme reactions were highly activated at pH 7.0, 45$^{\circ}C$ under the optimal conditions. As result of changes on the pattern of soy-protein hydrolysates by SDS-electrophoresis, high molecular peptides of hydrolysates by No. 5(Mucor circinelloides M5) and No. 16(Bacillus megaterium B16) enzymes were slowly decrease and 66KD band of these were remained after 3hours reaction. Production of low molecular peptides of hydrolysates by No. 4(Aspergillus oryzae M4) and No. 95(Bacillus subtilis YG 95) enzymes were remarkably detected during the proceeding reactions. As results of HPLC analysis, low molecular peptides of 15∼70KD were mainly appeared during the proceeding enzyme reactions. And, the more DH was increased, the more SDS-surface hydrophobicity was decreased. Hydrolysates by No. 4 enzyme was not only the highest DH of all hydrolysates, but the strongest bitter taste in a sensory evaluation. Sweat taste among the hydrolysates showed little difference. But, when combinative enzymes were treated, combinative enzyme of No. 4(Aspergillus oryzae M4)and No. 16(Bacillus megaterium B16) showed the strongest sweat taste. In conclusion, we assumed that it will be possible to prepare the hydrolysates having functionality when soy-protein were hydrolyzed by these specific enzymes.

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Bacterial growth and carbon-to-phosphorus consumption in drinking water with different carbon and phosphorus levels (수돗물의 탄소와 인 농도에 따른 세균의 생장과 C/P 소모율)

  • Choi, Sung-Chan;Park, e-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.689-701
    • /
    • 2013
  • Bacterial growth and corresponding consumption of carbon and phosphorus were examined in which tap water samples containing a very low concentration of free chlorine were supplemented with organic carbon and/or phosphorus. The experiments were performed in a fed-batch mode under a controlled temperature of $20^{\circ}C$. In the phosphorus alone-added water, there was no significant increase in bacterial numbers measured as heterotrophic plate count (HPC) in the bulk water. However, bacterial growth was stimulated by the addition of carbon (e.g., bulk HPC levels increased to $10^3CFU/mL$) and further stimulated by the combined addition of carbon and phosphorus (e.g., bulk HPC to $10^5CFU/mL$). The same effects were observed in biofilm HPC and biomass formed on polyethylene (PE) slide surfaces. In the water where organic carbon and phosphorus were added together, the highest biofilm HPC and biomass (measured as extracellular polymeric substance components) densities were observed which were $7.6{\times}10^5CFU/cm^2$ and $5.3{\mu}g/cm^2$, respectively. In addition to the bacterial growth, additions of organic carbon and/or phosphorus resulted in different bacterial carbon-to-phosphorus (C/P) consumption ratios. Compared to a typical bacterial C/P consumption ratio of 100:1, a higher C/P ratio (590:1) occurred in the carbon alone-added water, while a lower ratio (40:1) in phosphorus alone-added water. Comparative value (80:1) of C/P ratio was also observed in the water where organic carbon and phosphorus were added together. At the given experimental conditions, bacterial growth was deemed to be more sensitive to microbially available organic carbon than phosphorus. The effect of phosphorus addition, which resulted in a lower C/P consumption ratio, seemed to be tightly associated with the presence of microbially available organic carbon. These results suggested that the control of extrinsic carbon influx seemed to be more important to minimize bacterial regrowth in drinking water system, since even low content of phosphorus naturally occurring in drinking water was enough to allow a bacterial growth.

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

An Investigation of the Current Squeezing Effect through Measurement and Calculation of the Approach Curve in Scanning Ion Conductivity Microscopy (Scanning Ion Conductivity Microscopy의 Approach Curve에 대한 측정 및 계산을 통한 Current Squeezing 효과의 고찰)

  • Young-Seo Kim;Young-Jun Cho;Han-Kyun Shin;Hyun Park;Jung Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.54-62
    • /
    • 2024
  • SICM (Scanning Ion Conductivity Microscopy) is a technique for measuring surface topography in an environment where electrochemical reactions occur, by detecting changes in ion conductivity as a nanopipette tip approaches the sample. This study includes an investigation of the current response curve, known as the approach curve, according to the distance between the tip and the sample. First, a simulation analysis was conducted on the approach curves. Based on the simulation results, then, several measuring experiments were conducted concurrently to analyze the difference between the simulated and measured approach curves. The simulation analysis confirms that the current squeezing effect occurs as the distance between the tip and the sample approaches half the inner radius of the tip. However, through the calculations, the decrease in current density due to the simple reduction in ion channels was found to be much smaller compared to the current squeezing effect measured through actual experiments. This suggests that ion conductivity in nano-scale narrow channels does not simply follow the Nernst-Einstein relationship based on the diffusion coefficients, but also takes into account the fluidic hydrodynamic resistance at the interface created by the tip and the sample. It is expected that SICM can be combined with SECM (Scanning Electrochemical Microscopy) to overcome the limitations of SECM through consecutive measurement of the two techniques, thereby to strengthen the analysis of electrochemical surface reactivity. This could potentially provide groundbreaking help in understanding the local catalytic reactions in electroless plating and the behaviors of organic additives in electroplating for various kinds of patterns used in semiconductor damascene processes and packaging processes.

A Study on Market Expansion Strategy via Two-Stage Customer Pre-segmentation Based on Customer Innovativeness and Value Orientation (고객혁신성과 가치지향성 기반의 2단계 사전 고객세분화를 통한 시장 확산 전략)

  • Heo, Tae-Young;Yoo, Young-Sang;Kim, Young-Myoung
    • Journal of Korea Technology Innovation Society
    • /
    • v.10 no.1
    • /
    • pp.73-97
    • /
    • 2007
  • R&D into future technologies should be conducted in conjunction with technological innovation strategies that are linked to corporate survival within a framework of information and knowledge-based competitiveness. As such, future technology strategies should be ensured through open R&D organizations. The development of future technologies should not be conducted simply on the basis of future forecasts, but should take into account customer needs in advance and reflect them in the development of the future technologies or services. This research aims to select as segmentation variables the customers' attitude towards accepting future telecommunication technologies and their value orientation in their everyday life, as these factors wilt have the greatest effect on the demand for future telecommunication services and thus segment the future telecom service market. Likewise, such research seeks to segment the market from the stage of technology R&D activities and employ the results to formulate technology development strategies. Based on the customer attitude towards accepting new technologies, two groups were induced, and a hierarchical customer segmentation model was provided to conduct secondary segmentation of the two groups on the basis of their respective customer value orientation. A survey was conducted in June 2006 on 800 consumers aged 15 to 69, residing in Seoul and five other major South Korean cities, through one-on-one interviews. The samples were divided into two sub-groups according to their level of acceptance of new technology; a sub-group demonstrating a high level of technology acceptance (39.4%) and another sub-group with a comparatively lower level of technology acceptance (60.6%). These two sub-groups were further divided each into 5 smaller sub-groups (10 total smaller sub-groups) through two rounds of segmentation. The ten sub-groups were then analyzed in their detailed characteristics, including general demographic characteristics, usage patterns in existing telecom services such as mobile service, broadband internet and wireless internet and the status of ownership of a computing or information device and the desire or intention to purchase one. Through these steps, we were able to statistically prove that each of these 10 sub-groups responded to telecom services as independent markets. We found that each segmented group responds as an independent individual market. Through correspondence analysis, the target segmentation groups were positioned in such a way as to facilitate the entry of future telecommunication services into the market, as well as their diffusion and transferability.

  • PDF

PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity (주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류)

  • 진계환;조현숙;이태수;구용숙
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.211-217
    • /
    • 2003
  • The Principal component analysis (PCA) is a well-known data analysis method that is useful in linear feature extraction and data compression. The PCA is a linear transformation that applies an orthogonal rotation to the original data, so as to maximize the retained variance. PCA is a classical technique for obtaining an optimal overall mapping of linearly dependent patterns of correlation between variables (e.g. neurons). PCA provides, in the mean-squared error sense, an optimal linear mapping of the signals which are spread across a group of variables. These signals are concentrated into the first few components, while the noise, i.e. variance which is uncorrelated across variables, is sequestered in the remaining components. PCA has been used extensively to resolve temporal patterns in neurophysiological recordings. Because the retinal signal is stochastic process, PCA can be used to identify the retinal spikes. With excised rabbit eye, retina was isolated. A piece of retina was attached with the ganglion cell side to the surface of the microelectrode array (MEA). The MEA consisted of glass plate with 60 substrate integrated and insulated golden connection lanes terminating in an 8${\times}$8 array (spacing 200 $\mu$m, electrode diameter 30 $\mu$m) in the center of the plate. The MEA 60 system was used for the recording of retinal ganglion cell activity. The action potentials of each channel were sorted by off­line analysis tool. Spikes were detected with a threshold criterion and sorted according to their principal component composition. The first (PC1) and second principal component values (PC2) were calculated using all the waveforms of the each channel and all n time points in the waveform, where several clusters could be separated clearly in two dimension. We verified that PCA-based waveform detection was effective as an initial approach for spike sorting method.

  • PDF

위성자료를 이용한 토지피복에 따른 열환경 평가

  • Jo, Su-Jin;Kim, Hae-Dong;An, Ji-Suk
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.88-89
    • /
    • 2010
  • 최근 인간의 활동범위와 영역이 확대되고 산업이 발전하면서 인간의 삶과 지속가능한 발전 등 도시 기후에 관한 관심도 높아지고 있다. 산업혁명 이후 도시화와 산업화로 인해 인구가 증가하고 도시지역으로 집중됨으로써 도시 열섬화 현상에 대한 도시환경문제가 부각되고 있다. 이는 최근까지도 도시개발에 있어서 기능과 효율성이 우선시 되어 도시기후에 대한 배려가 이루어지지 못하고 있으며, 오히려 과도한 냉난방을 가동하는 등 쾌적한 실내 환경 조성을 위한 노력만을 행해왔다. 도시화에 따른 도시의 열환경 구조의 변화는 토지이용의 변화에 따른 피복상태와 밀접한 관련이 있다는 연구들이 수행된 바 있다. 이렇듯 도시화가 진행됨에 따라서 도심 지표면을 덮고 있는 포장재도 변하고 있다. 대표적인 토지피복재로는 콘크리트와 아스팔트 등의 인공포장재, 수계, 삼림 등으로 크게 나누어 볼 수 있다. 최근 도심의 발달로 인해 도심의 표면은 점차 인공포장재인 아스팔트와 콘크리트로 덮여지고 있다. 인공포장재는 맑은 여름철 낮에 받아들인 열을 야간에도 머금고 있어 도시열섬현상의 주요원인이 된다. 도시화가 진행됨에 따라 토지이용형태가 변화하고 있으며 이러한 토지피복의 변화는 그 지역의 기온과 풍향, 풍속뿐만 아니라 지표온도도 변화시키므로 도시 열환경 구조에 적지 않은 영향을 미치고 있다. 과거에는 자연 환경과 도시공간에 대한 인식이 다른 분야로 나누어져서 다루었지만 현재 위성영상 기술의 발달로 많은 공간 정보를 파악할 수 있게 된 바 도시기후변화에 더욱 직접적이고 근본적인 접근이 쉬워졌다. 원격탐사기법의 활용은 위성자료를 이용하여 동시간대 평면적인 열구조를 정량적으로 파악하는데에 중요한 자료를 제공하여 도시지역을 덮고 있는 인공자재의 존재가 도시열섬의 형성과 밀접하게 연관이 있다는 사실을 짐작할 수 있다. 따라서 도시기후변화의 문제점을 더욱 적극적으로 해결하기 위해서는 토지이용에 따른 지표면 온도 상승의 현황을 파악하고 이를 저감 시킬 수 있는 대책들이 수립되어야 한다. 본 연구는 보다 세분화된 도시 열환경을 정량적으로 분석 평가하기 위해서 토지피복별 분류를 3가지로 대구시 중구 경북대학교 부속 고등학교(이하 사대부고 지점)를 도심지역으로, 경상남도 창녕군 창녕읍 우포늪(이하 우포지점)을 수계지점으로, 경상북도 안동시 길안면 만음리(이하 안동지점) 지점과 대구시 칠곡군 동명면 득명리 팔공산 한티재 도립공원(이하 팔공지점)을 산림으로 분류하여 연구하였다. 대구 계명대학교 기후환경연구실에서 보유하고 있는 AWS(Automatic Weather Station) 자료로 기상요소를 분석하였으며, MODIS Terra 위성영상을 이용하여 지표온도를 추출하고 분석하였다. 또 기상요소와 지표온도를 이용해 회귀식을 도출하여 추정기온을 산출하였다. 그 결과 첫째, 계절에 따른 기온의 시간변화는 여름의 평균기온이 $25.13^{\circ}C$$24.12^{\circ}C$로 사대지점과 우포지점의 평균기온이 가장 높게 나타났으며, 이는 도심에서 발생되는 인공열의 영향으로, 우포지점은 수계의 특징이 반영된 결과라 할 수 있다. 둘째, 계절에 따른 풍속의 시간변화는 여름의 경우 우포지점의 풍속이 1.63m/s로 가장 높은 반면 안동지점의 풍속이 0.27m/s로 가장 낮은 것으로 나타났다. 겨울의 경우 팔공지점의 풍속이 1.82m/s로 가장 높게 나타났다. 토지피복에 따른 지표면의 변화가 도시기후에 미치는 영향을 정량적으로 평가하고, 또 지표면 온도와 기온과의 차이를 알아보기 위하여 MODIS 위성 영상을 이용하여 세 지점을 대상으로 토지피복에 따른 열환경을 평가 분석하여 다음과 같은 결론을 얻을 수 있었다. 첫째, MODIS 위성영상을 이용하여 산출한 지표면 온도는 여름철 주간에 안동지점의 경우 주변지역에 비해 지표면 온도가 약 $26^{\circ}C$로 낮게 나타났으며 우포지점의 경우 수계가 가지는 열 완충능력으로 약 $27^{\circ}C$의 낮은 지표면 온도를 나타내었다. 사대지점의 경우 약 $34^{\circ}C$이상의 높은 지표면 온도를 나타내었다. 둘째, MODIS 위성영상을 이용하여 산출한 지표면 온도와 관측된 기온과의 회귀식을 도출하여 상관분석 한 결과, 모든 지점의 값에서 상관성 및 신뢰도가 높은 것으로 나타났다. 셋째, 상관분석의 결과를 통하여 추정한 기온은 지표면 온도와의 차이가 있지만 유사한 패턴의 결과로 추출되었다. 이러한 결과로 볼 때 도시의 인공자재를 이용한 건축과 개발이 도시열섬현상을 유발하는데 중요한 역할을 하는 것을 정량적으로 평가할 수 있었다. 따라서 본 논문의 연구결과를 바탕으로 도시계획에 있어서 인공구조물에 의한 기온과 풍속이 받는 영향을 고려하여 도심의 인공구조물의 배치나 자재에 대한 개발이 이루어져야 할 것이며 열교환의 방해 및 바람순환이 확보되는 구조로 개선되어야 할 것이다.

  • PDF

Influences of the Composition on Spectroscopic Characteristics of AlxGa1-xN Thin Films (AlxGa1-xN 박막의 조성이 분광학적 특성에 미치는 영향)

  • Kim, Dae Jung;Kim, Bong Jin;Kim, Duk Hyeon;Lee, Jong Won
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1281-1287
    • /
    • 2018
  • In this study, $Al_xGa_{1-x}N$ films were grown on (0001) sapphire substrates by using metal-organic chemical vapor deposition (MOCVD). The crystallinity of the grown films was examined with X-ray diffraction (XRD) patterns. The surfaces and the chemical properties of the $Al_xGa_{1-x}N$ films were investigated using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The optical properties of the $Al_xGa_{1-x}N$ film were studied in a wide photon energy range between 2.0 ~ 8.7 eV by using spectroscopic ellipsometry (SE) at room temperature. The data obtained by using SE were analyzed to find the critical points of the pseudodielectric function spectra, $<{\varepsilon}(E)>=<{\varepsilon}_1(E)>+i<{\varepsilon}_2(E)>$. In addition, the second derivative spectra, $d^2<{\varepsilon}(E)>/dE^2$, of the pseudodielectric function for the $Al_xGa_{1-x}N$ films were numerically calculated to determine the critical points (CPs), such as the $E_0$, $E_1$, and $E_2$ structure. For the four samples (x = 0.18, 0.21, 0.25, 0.29) between a composition of x = 0.18 and x = 0.29, changes in the critical points (blue-shifts) with increasing Al composition at 300 K for the $Al_xGa_{1-x}N$ film were observed via ellipsometric measurements for the first time.

Estimation of High Resolution Sea Surface Salinity Using Multi Satellite Data and Machine Learning (다종 위성자료와 기계학습을 이용한 고해상도 표층 염분 추정)

  • Sung, Taejun;Sim, Seongmun;Jang, Eunna;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.747-763
    • /
    • 2022
  • Ocean salinity affects ocean circulation on a global scale and low salinity water around coastal areas often has an impact on aquaculture and fisheries. Microwave satellite sensors (e.g., Soil Moisture Active Passive [SMAP]) have provided sea surface salinity (SSS) based on the dielectric characteristics of water associated with SSS and sea surface temperature (SST). In this study, a Light Gradient Boosting Machine (LGBM)-based model for generating high resolution SSS from Geostationary Ocean Color Imager (GOCI) data was proposed, having machine learning-based improved SMAP SSS by Jang et al. (2022) as reference data (SMAP SSS (Jang)). Three schemes with different input variables were tested, and scheme 3 with all variables including Multi-scale Ultra-high Resolution SST yielded the best performance (coefficient of determination = 0.60, root mean square error = 0.91 psu). The proposed LGBM-based GOCI SSS had a similar spatiotemporal pattern with SMAP SSS (Jang), with much higher spatial resolution even in coastal areas, where SMAP SSS (Jang) was not available. In addition, when tested for the great flood occurred in Southern China in August 2020, GOCI SSS well simulated the spatial and temporal change of Changjiang Diluted Water. This research provided a potential that optical satellite data can be used to generate high resolution SSS associated with the improved microwave-based SSS especially in coastal areas.