DOI QR코드

DOI QR Code

Bacterial growth and carbon-to-phosphorus consumption in drinking water with different carbon and phosphorus levels

수돗물의 탄소와 인 농도에 따른 세균의 생장과 C/P 소모율

  • Choi, Sung-Chan (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Park, e-Keun (Department of Environmental Engineering, Kangwon National University) ;
  • Kim, Yeong-Kwan (Department of Environmental Engineering, Kangwon National University)
  • Received : 2013.11.08
  • Accepted : 2013.12.02
  • Published : 2013.12.15

Abstract

Bacterial growth and corresponding consumption of carbon and phosphorus were examined in which tap water samples containing a very low concentration of free chlorine were supplemented with organic carbon and/or phosphorus. The experiments were performed in a fed-batch mode under a controlled temperature of $20^{\circ}C$. In the phosphorus alone-added water, there was no significant increase in bacterial numbers measured as heterotrophic plate count (HPC) in the bulk water. However, bacterial growth was stimulated by the addition of carbon (e.g., bulk HPC levels increased to $10^3CFU/mL$) and further stimulated by the combined addition of carbon and phosphorus (e.g., bulk HPC to $10^5CFU/mL$). The same effects were observed in biofilm HPC and biomass formed on polyethylene (PE) slide surfaces. In the water where organic carbon and phosphorus were added together, the highest biofilm HPC and biomass (measured as extracellular polymeric substance components) densities were observed which were $7.6{\times}10^5CFU/cm^2$ and $5.3{\mu}g/cm^2$, respectively. In addition to the bacterial growth, additions of organic carbon and/or phosphorus resulted in different bacterial carbon-to-phosphorus (C/P) consumption ratios. Compared to a typical bacterial C/P consumption ratio of 100:1, a higher C/P ratio (590:1) occurred in the carbon alone-added water, while a lower ratio (40:1) in phosphorus alone-added water. Comparative value (80:1) of C/P ratio was also observed in the water where organic carbon and phosphorus were added together. At the given experimental conditions, bacterial growth was deemed to be more sensitive to microbially available organic carbon than phosphorus. The effect of phosphorus addition, which resulted in a lower C/P consumption ratio, seemed to be tightly associated with the presence of microbially available organic carbon. These results suggested that the control of extrinsic carbon influx seemed to be more important to minimize bacterial regrowth in drinking water system, since even low content of phosphorus naturally occurring in drinking water was enough to allow a bacterial growth.

잔류염소 농도가 상당히 낮은 수돗물에서 유기탄소(organic carbon)와 인(phosphorus)의 증가가 세균 생장에 미치는 영향과 세균에 의한 유기탄소와 인의 소모를 fed-batch 실험조건($20^{\circ}C$ 수온)에서 조사하였다. 수돗물에서 단지 인의 증가만으로는 부유성 세균의 현저한 수적 증가는 나타나지 않았다. 그러나 유기탄소의 증가는 부유성 세균을 $10^3CFU/mL$ 수준까지 증가시켰으며, 특히 유기탄소와 함께 동반된 인의 증가는 부유성 세균을 $10^5CFU/mL$ 수준까지 증가시켰다. 이러한 효과들은 polyethylene (PE) slide 표면에 형성된 생물막 세균과 생물량 측정에서도 동일하게 나타났다. 유기탄소와 함께 인 농도가 높은 수돗물에서 PE slide 표면에 형성된 생물막 세균과 세포외 중합체(extracellular polymeric substance) 구성 성분으로 측정된 생물량은 각각 $7.6{\times}10^5CFU/cm^2$$5.3{\mu}g/cm^2$로 가장 높았다. 세균 생장과 더불어, 수돗물에서 유기탄소와 인의 증가는 세균에 의한 탄소와 인의 이용 패턴에 영향을 미치는 것으로 나타났다. 전형적인 세균의 C/P 소모비율(100:1)과 비교했을 때, 상대적으로 높은 C/P 소모비율(590:1)은 유기탄소 농도가 높은 수돗물에서, 그리고 상대적으로 낮은 C/P 소모비율(40:1)은 인 농도가 높은 수돗물에서 관찰되었다. 또한 유기탄소와 함께 인 농도가 높은 수돗물에서도 상대적으로 낮은 C/P 소모비율(80:1)이 관찰되었다. 주어진 실험조건에서는 수돗물과 생물막내 세균 생장이 인의 증가보다는 유기탄소의 증가에 더욱 민감하게 반응하는 것으로 나타났다. 수돗물에서 인의 증가는 세균의 낮은 C/P 소모비율을 가져오지만, 세균 생장에 미치는 인의 영향은 세균이 쉽게 이용할 수 있는 유기탄소의 존재와 밀접하게 관련되어 있는 것으로 보인다. 그러므로 수돗물에 자연적으로 존재하는 낮은 농도의 인만으로도 세균 생장을 위해 필요한 인 요구량을 만족시킬 수 있기 때문에, 수돗물에서 세균 생장의 최소화를 위해서는 인보다는 유기탄소의 외부적인 유입을 제어하는 것이 더욱 중요한 것으로 판단된다.

Keywords

References

  1. AOAC (1995) AOAC official method 988.12 (Chapter 44). In AOAC International (Ed.), AOAC Official Methods of Analysis, 16th ed., pp. 13-14. Arlington, VA.
  2. American Public Health Association (2005) Standard Methods for the Examination of Water and Wastewater. 21st Ed. APHA, Washington, DC.
  3. Appenz eller, B.M.R., Batte, M., Mathieu, L., Block, J.C., Lahoussine, V., Cavard, J., and Gatel, D. (2001) Effect of adding phosphate to drinking water on bacterial growth in slightly and highly corroded pipes. Wat. Res., 35, pp. 1100-1105. https://doi.org/10.1016/S0043-1354(00)00337-7
  4. Batte , M., Appenzeller, B.M.R., Grandjean, D., Fass, S., Gauthier, V., Jorand, F., Mathieu, L., Boualam, M., Saby, S., and Block, J.C. (2003a) Biofilms in drinking water distribution systems. Rev. Environ. Sci. Biotech., 2, 147-168. https://doi.org/10.1023/B:RESB.0000040456.71537.29
  5. Batte, M., Koudjonou, B., Laurent, P., Mathieu, L., Coallier, J., and Prevost, M. (2003b) Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system. Wat. Res., 37, pp. 1351-1361. https://doi.org/10.1016/S0043-1354(02)00476-1
  6. Batte, M., Mathieu, L., Laurent, P., and Prevost, M. (2003c) Influence of phosphate and disinfection on the composition of biofilms produced from drinking water, as measured by fluorescence in situ hybridization. Can. J. Microbiol., 49, pp. 741-753. https://doi.org/10.1139/w03-094
  7. Chandy, J.P. and Angles, M.L. (2001) Determination of nutrients limiting biofilm formation and the subsequent impact on disinfectant decay. Wat. Res., 35, pp. 2677-2682. https://doi.org/10.1016/S0043-1354(00)00572-8
  8. Chu, C ., Lu, C., and Lee, C. (2005) Effect of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J. Environ. Manage., 74, pp. 255-263. https://doi.org/10.1016/j.jenvman.2004.09.007
  9. Donlan , R.M. (2002) Biofilms: microbial life on surfaces. Emerg. Infect. Dis., 8, pp. 881-890. https://doi.org/10.3201/eid0809.020063
  10. Escoba r, C.I., Randall, A., and Taylor, J. (2001) Bacterial growth in distribution systems: Effect of assimilable organic carbon and biodegradable dissolved organic carbon. Environ. Sci. Technol., 35, pp. 3442-3447. https://doi.org/10.1021/es0106669
  11. Flemming, H.C. and Wingender, J. (2001) Relevance of microbial extracellular polymeric substances (EPSs) - Part I: structural and ecological aspects. Wat. Sci. Technol., 43, pp. 1-8.
  12. Jegath eesan, V., Kastl, G., Fisher, I., Chandy, J., and Angles, M. (2004) Modeling bacterial growth in drinking water: effect of nutrients. J. Am. Wat. Works Assoc., 96, pp. 129-141. https://doi.org/10.1002/j.1551-8833.2004.tb10634.x
  13. Kornberg, A. and Fraley, C.D. (2000) Inorganic polyphosphate: a molecular fossil come to life, ASM News, 66, pp. 275-280.
  14. LeChev allier, M.W., Schulz, W., and Lee, R.G. (1991) Bacterial nutrients in drinking water. Appl. Environ. Microbiol., 57, pp. 857-862.
  15. Lehtola , M.J., Juhna, T., Miettinen, I.T., Vartiainen, T., and Martikainen, P.J. (2004) Formation of biofilms in drinking water distribution networks, a case study in two cities in Finland and Latvia. J. Ind. Microbiol. Biotechnol., 31, pp. 489-494. https://doi.org/10.1007/s10295-004-0173-2
  16. Lehtola , M.J., Miettinen, I.T., and Martikainen, P.J. (2002a) Biofilm formation in drinking water affected by low concentrations of phosphorus. Can. J. Microbiol., 48, pp. 494-499. https://doi.org/10.1139/w02-048
  17. Lehtola , M.J., Miettinen, I.T., Keinanen, M.M., Kekki, T.K., Laine, O., Hirvonen, A., Vartiainen, T., and Martikainen, P.J. (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Wat. Res., 38, pp. 3769-3779. https://doi.org/10.1016/j.watres.2004.06.024
  18. Lehtola , M.J., Miettinen, I.T., Vartiainen, T., and Martikainen, P.J. (2002b) Changes in content of microbially available phosphorus, assimilable organic carbon and microbial growth potential during drinking water treatment processes. Wat. Res., 36, pp. 3681-3690. https://doi.org/10.1016/S0043-1354(02)00100-8
  19. Lehtola , M.J., Miettinen, I.T., Vartiainen, T., Rantakokko, P., Hirvonen, A., and Martikainen, P.J. (2003) Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water. Wat. Res., 37, pp. 1064-1070. https://doi.org/10.1016/S0043-1354(02)00462-1
  20. Miettinen, I.T., Vartiainen, T., Martikainen, P.J. (1997) Phosphorus and bacterial growth in drinking water. Appl. Environ. Microbiol., 63, pp. 3242-3245.
  21. Ndiongue, S., Huck, P.M., and Slawson, R.M. (2005) Effects of temperature and biodegradable organic matter on control of biofilms by free chlorine in a model drinking water distribution system. Wat. Res., 39, pp. 953-964 https://doi.org/10.1016/j.watres.2004.12.019
  22. Nielsen , P.H., Jahn, A., and Palmgren, R. (1997) Conceptual model for production and composition of exopolymers in biofilms. Wat. Sci. Technol., 36, pp. 11-19. https://doi.org/10.1016/S0273-1223(97)00318-1
  23. Park, S .-K. and Hu, J.Y. (2010) Interaction between phosphorus and biodegradable organic carbon on drinking water biofilm subject to chlorination. J. Appl. Microbiol., 108, pp. 2077-2087.
  24. Park, S .K., Pak, K.R., Choi, S.C., and Kim, Y.K. (2004) Evaluation of bioassays for analyzing biodegradable dissolved organic carbon in drinking water. J. Environ. Sci. HealthA, 39, pp. 103-112. https://doi.org/10.1081/ESE-120027371
  25. Rashid , M.H., Rao, N.N., and Kornberg, A. (2000) Inorganic polyphosphate is required for the motility of bacterial pathogens. J. Bacteriol., 182, pp. 225-227. https://doi.org/10.1128/JB.182.1.225-227.2000
  26. Rompre, A., Prevost, M., Coallier, J., Brisebois, P., and Lavoie, J. (2000) Impacts of implementing a corrosion control strategy on biofilm growth. Wat. Sci. Technol., 41, 287-294.
  27. Sathasivan, A. and Ohgaki, S. (1999) Application of new bacterial regrowth potential method for water distribution system - a clear evidence of phosphorus limitation. Wat. Res., 33, pp. 137-144. https://doi.org/10.1016/S0043-1354(98)00158-4
  28. Sathasivan, A., Ohgaki, S., Yamamoto, K., and Kamiko, N. (1997) Role of inorganic phosphorus in controlling regrowth in water distribution system. Wat. Sci. Technol., 35, pp. 37-44.
  29. Simoes , L.C. and Simoes, M. (2013) Biofilms in drinking water: problems and solutions. Royal Soc. Chem. Adv., 3, pp. 2520-2533.
  30. Srinivasan, S. and Harrington, G.W. (2007) Biostability analysis for drinking water distribution systems. Wat. Res., 41, pp. 2127-2138. https://doi.org/10.1016/j.watres.2007.02.014
  31. Stoscheck, C.M. (1990) Quantitation of protein. In Deutscher, M.P. (Ed.), Guide to Protein Purification (Methods in Enzymology, Vol. 182), pp. 50-68. Academic Press Inc., San Diego, CA.
  32. Sutherland, I.W. (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiol., 147, pp. 3-9. https://doi.org/10.1099/00221287-147-1-3
  33. Tsai, Y .P., Pai, T.Y., and Qiu, J.M. (2004) The impacts of the AOC concentration on biofilm formation under higher shear force condition. J. Biotechnol., 111, pp. 155-167. https://doi.org/10.1016/j.jbiotec.2004.04.005
  34. van der Kooij, D. (1999) Potential for biofilm development in drinking water distribution systems. J. Appl. Microbiol. Symp. Suppl., 85, pp. 39S-44S.
  35. van der Kooij, D., Hijnen, W.A.M., and Visser, A. (1982) Determining the concentration of easily assimilable organic carbon in drinking water, J. Am. Wat. Works Assoc., 74, pp. 540-545. https://doi.org/10.1002/j.1551-8833.1982.tb05000.x
  36. Volk, C .J. and LeChevallier, M.W. (2000) Assessing biodegradable organic matter. J. Am. Wat. Works Assoc., 92, pp. 64-76.
  37. Vrede, K., Heldal, M., Norland, S., and Bratbak, G. (2002) Elemental composition (C, N, P) and cell volume of exponentially growing and nutrient-limited bacterioplankton. Appl. Environ. Microbiol., 68, pp. 2965-2971. https://doi.org/10.1128/AEM.68.6.2965-2971.2002
  38. Wang, J.D. and Levin, P.A. (2009) Metabolism, cell growth and the bacterial cell cycle. Nat. Rev. Microbiol., 7, pp. 822-827. https://doi.org/10.1038/nrmicro2202
  39. Weltin, D., Hoffmeister, D., Dott, W., and Kampfer, P. (1996) Studies on polyphosphate and poly-$\beta$-hydroxyalkanoate accumulation in Acinetobacter johnsonii 120 and some other bacteria from activated sludge in batch and continuous culture. Acta Biotechnol., 16, pp. 91-102. https://doi.org/10.1002/abio.370160202