Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1281

Influences of the Composition on Spectroscopic Characteristics of AlxGa1-xN Thin Films  

Kim, Dae Jung (School of Basic Sciences, Hanbat National University)
Kim, Bong Jin (School of Basic Sciences, Hanbat National University)
Kim, Duk Hyeon (School of Basic Sciences, Hanbat National University)
Lee, Jong Won (Department of Advaned Materials Engineering, Hanbat National University)
Abstract
In this study, $Al_xGa_{1-x}N$ films were grown on (0001) sapphire substrates by using metal-organic chemical vapor deposition (MOCVD). The crystallinity of the grown films was examined with X-ray diffraction (XRD) patterns. The surfaces and the chemical properties of the $Al_xGa_{1-x}N$ films were investigated using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The optical properties of the $Al_xGa_{1-x}N$ film were studied in a wide photon energy range between 2.0 ~ 8.7 eV by using spectroscopic ellipsometry (SE) at room temperature. The data obtained by using SE were analyzed to find the critical points of the pseudodielectric function spectra, $<{\varepsilon}(E)>=<{\varepsilon}_1(E)>+i<{\varepsilon}_2(E)>$. In addition, the second derivative spectra, $d^2<{\varepsilon}(E)>/dE^2$, of the pseudodielectric function for the $Al_xGa_{1-x}N$ films were numerically calculated to determine the critical points (CPs), such as the $E_0$, $E_1$, and $E_2$ structure. For the four samples (x = 0.18, 0.21, 0.25, 0.29) between a composition of x = 0.18 and x = 0.29, changes in the critical points (blue-shifts) with increasing Al composition at 300 K for the $Al_xGa_{1-x}N$ film were observed via ellipsometric measurements for the first time.
Keywords
$Al_xGa_{1-x}N$ film; Spectroscopic ellipsometry; Metal-organic chemical vapor deposition; Pseudodielectric function; Atomic force microscopy; X-ray photoelectron spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Nakamura and G. Fasol, The Blue Laser Diode (Springer-Verlag, New York, 1997).
2 J. Kwak, J. Lim, M. Park, S. Lee and K. Char et al., Nano Lett. 15, 3793 (2015).   DOI
3 M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chin and J. Burm et al., Appl. Phys. Lett. 66, 1083 (1995).   DOI
4 Z. Wang, J. Cao, R. Sun, F. Wang and Y. Yao, Superlattices Microstruct. 120, 753 (2018).   DOI
5 D. Fritsch, H. Schmidt and M. Grundmann, Phys. Rev. B 67, 235205 (2003).   DOI
6 F. Fedler, R. J. Hauenstein, H. Klausing, D. Mistele and O. Semchinova et al., J. Cryst. Growth 241, 535 (2002).   DOI
7 N. H. Zhang, X. L. Wang, Y. P. Zeng, H. L. Xiao and J. X. Wang et al., J. Cryst. Growth 280, 346 (2005).   DOI
8 H. Sasaki, S. Kato, T. Matsuda, Y. Sato and M. Iwami et al., J. Cryst. Growth 298, 305 (2007).   DOI
9 O. Klein, J. Biskupek, K. Forghani, F. Scholz and U. Kaiser, J. Cryst. Growth 324, 63 (2011).   DOI
10 S. Ruffenach-Clur, O. Briot, J. L. Rouviere, B. Gil and R. L. Aulombard, Mater. Sci. Eng. B 50, 219 (1997).   DOI
11 B. Rezaei, A. Asgari and M. Kalafi, Physica B 371, 107 (2006).   DOI
12 M. Stutzmann, O. Ambacher, A. Cros, M. S. Brandt and H. Angerer et al., Mater. Sci. Eng. B 50, 212 (1997).   DOI
13 T. Wethkamp, K. Wilmers, N. Esser, W. Richter and O. Ambacher et al., Thin Solid Films 313-314, 745 (1998).   DOI
14 R. S. Balmer, C. Pickering, A. M. Kier, J. C. H. Birbeck and M. Saker et al., J. Cryst. Growth 230, 361 (2001).   DOI
15 Y. Liu, Q. Li, L. Wan, B. Kucukgok and E. Ghafari et al., Appl. Surf. Sci. 421, 389 (2017).   DOI
16 T. Miyazaki, T. Fujimaki, S. Adachi and K. Ohtsuka, J. Appl. Phys. 89, 8316 (2001).   DOI
17 T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke and K. Ohtsuka, J. Appl. Phys. 82, 3528 (1997).   DOI
18 N. V. Edwards, S. D. Yoo, M. D. Bremser, M. N. Horton and N. R. Perkins et al., Thin Solid Films 313-314, 187 (1998).   DOI
19 W. Luo, X. Wang, H. Xiao, C. Wang and J. Ran et al., Microelectronics J. 39, 1108 (2008).   DOI
20 A. Hussein, Z. Hassan, S. Thahab, S. Ng and H. Hassan et al., Appl. Surf. Sci. 257, 4159 (2011).   DOI
21 A. Hussein, Z. Hassan, S. Thahab, A. Hassan and M. Abid et al., Physica B 406, 1267 (2011).   DOI
22 A. Salokatve and M. Hovinen, J. Appl. Phys. 67, 3378 (1990).   DOI
23 R. Sohal, P. Dudek and O. Hilt, Appl. Surf. Sci. 256, 2210 (2010).   DOI
24 X. L. Wang, D. G. Zhao, J. Chen, X. Y. Li and H. M. Gong et al., Appl. Surf. Sci. 252, 8706 (2006).   DOI
25 Y. Zhong, Y. Zhou, H. Gao, S. Dai and J. He et al., Appl. Surf. Sci. 420, 817 (2017).   DOI
26 J. W. Do, H. W. Jung, M. J. Shin, H. K. Ahn and H. kim et al., Thin Solid Films 628, 31 (2017).   DOI
27 M. Cardona and D. L. Greenaway, Phys. Rev. 133, A1685 (1964).   DOI
28 S. Logothetidis, J. Petalas, M. Cardona and T. D. Moustakas, Phys. Rev. B 50, 18017 (1994).   DOI
29 K. Miwa and A. Fukumoto, Phys. Rev. B 48, 7897 (1993).   DOI
30 C. S. Cook, S. Zollner, M. R. Bauer, P. Aella and J. Kouvetakis et al., Thin Solid Films 455-456, 217 (2004).   DOI
31 L. Vina, S. Logothetidis and M. Cardona, Phys. Rev. B 30, 1979 (1984).   DOI
32 C. Buchheim, R. Goldhahn, M. Rakel, C. Cobet and N. Esser et al., Phys. Status Solidi B 242, 2610 (2005).   DOI