• Title/Summary/Keyword: 표면 코팅제

Search Result 275, Processing Time 0.024 seconds

Evaluation of Corrosion Resistance using Electro-chemical Methods for the High-Durability Concrete exposed to Marine Condition (해양환경에 노출된 고내구성 콘크리트의 전기화학적기법을 이용한 부식저항성 평가)

  • Yang, Eun-Ik;Kim, Myung-Yu;Lee, Dong-Gun;Han, Sang-Hun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.320-328
    • /
    • 2007
  • The durability of marine concrete structures is severely degraded by corrosion due to seawater attack and diffusion of chloride in concrete. The deduction of durability causes high repair cost for maintenance of marine concrete structure. So, the applicability of high-durable materials is investigated to improve the durability in marine concrete structures. For these, the characteristics of corrosion prevention of marine concrete structures mixed with the mineral admixtures(SF, FA and BFS), the modified steel(stainless and coating steel), and corrosion inhibitors are evaluated using electro-chemical methods. As a results of this study, it is quantified for the effect of promotion of durability by high-durability materials in marine concrete structures.

Preparation of Talc-Silica Composites by Controlling Surface Charge Behavior (표면전하 거동 조절을 이용한 탈크-실리카 복합체의 제조)

  • Yun, Ki-Hoon;Park, Min-Gyeong;Moon, Young-Jin;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.116-124
    • /
    • 2017
  • A plate-type inorganic pigment complex was manufactured in a manner that treats the surface of the complex by adjusting zeta potential between talc, an inorganic pigment used as a material for color cosmetics, and hydrophobic silica. Talc, which is usually used in the prescription of color cosmetics, is a plate-type, white-colored inorganic substance with good application and spreadability to skin. Furthermore, it features excellent dispersibility and extensibility as well as outstanding heat tolerance, light stability, and chemical resistance. In general, silica contributes to durable makeup and stabilized formulation. This paper covers a process of manufacturing an inorganic pigment complex, where hydrophobic silica was applied to the surface of talc by using differences in zeta potential after the surface charges of talc and hydrophobic silica had been adjusted with cationic and anionic surfactants, respectively. The resulting inorganic pigment complex was composed of talc whose surface is coated hydrophobic silica to the thickness of $1{\mu}m$ or less, which developed an effective hydrophobic property. Zeta potential was measured to analyze the surface charge of an inorganic pigment, and FT-IR, used to check the functional group of a surfactant, was applied to treat the surface of the pigment. The surface of the inorganic pigment complex was observed employing SEM, EDS, and FIB, while its structure was confirmed with XRD and FT-IR.

A Study on the Changes in Surface Properties According to Post-treatment of SLA 3D Printing Materials (SLA 3D 프린팅 소재의 후처리에 따른 표면특성 변화 연구)

  • Bae, Seo Jun;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.132-138
    • /
    • 2022
  • In this study, a basic study was performed to systematically compare the changes in surface properties according to the post-processing method of the stereolithography (SLA) printing method, which is a photocuring 3D printing method, and to provide information on the post-processing method suitable for the application. Although it was possible to improve some of the transparency of the SLA-type output by regularly changing the irregular microstructure of the surface through polishing, it was difficult to secure sufficient transparency like glass. The change in contact angle characteristics due to grinding showed a tendency to slightly increase as the grinding time increased and the particle size of the sandpaper used was small, but the variation between samples was large and the average contact angle was 77~90°, showing no statistically significant difference. Surface treatment methods other than polishing were tried, and it was confirmed that it was possible to easily and simply improve the transparency by applying a commercially available vehicle scratch remover or silicone oil. In addition, a method for securing high transparency such as glass by using a scratch remover after sequential grinding while reducing the particle size of the sandpaper was proposed. Finally, even after surface treatment through polishing and various methods, it was difficult to secure a contact angle of 90° or more.

UV Curing and Peeling Characteristics of Acrylic Coating Ink with Various Amounts of Photoinitiator, Oligomer and Talc (광개시제, 올리고머 그리고 Talc 함량에 따른 아크릴계 코팅제의 UV경화 및 박리특성)

  • Yang, Jee-Woo;Seo, Ah Young;Lee, Chul Woo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.499-506
    • /
    • 2013
  • As the usuage of tempered glass for touch panel increased rapidly with the development of industry, the amount of UV curable coating solution used to protect glass surfaces during a tempered glass manufacturing process increased as well. The UV curable coating has advantages compared to thermal curing such as shortened curing time and non-solvent. Appropriated polymer and monomer were used as an acid polymer to grant an alkali peeling ability. The monomers were 2-hydroxyl methylacrylate, 1,6-hexanediol diacrylate and dipentaerythritol hexaacrylate which have acryl groups of 1, 2, and 6, respectively. The combination of three different types of photoinhibitors were used and bisphenol A epoxy diacrylate was used as an oligomer. In this study, experiments were carried out by controlling the amount of photoinitiator, oligomer, and additive while maintaining the constant content of the acid polymer and the acrylic monomer. The changes in physical properties according to the additive content were investigated. It was found that the combination of photoinitiators was necessary to achieve the hardness above 4H and it was possible to control the delamination type of the coating film from a sheet to pieces by the addition of TPO as an initiator. The increase in oligomer contents increased the hardness and adhesiveness alongside dissection time. Talc content of 20 wt% showed the best results.

Removal of NOx from Graphene based Photocatalyst Ceramic Filter (그래핀 기반 광촉매 담지 세라믹필터에서 질소산화물(NOx)의 제거)

  • Kim, Yong-Seok;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.600-605
    • /
    • 2022
  • In this study, nitrogen oxide (NOx) removal experiments were performed using a graphene based ceramic filter coated with a V2O5-WO3-TiO2 catalyst. Graphene oxide (GO) was prepared by Hummer's method using graphite, and the reduced graphene oxide was produced by reducing with hydrazine (N2H4). Vanadium (V), Tungsten (W), and Titanium (Ti) were coated by the sol-gel method, and then a metal oxide-supported filter was prepared through a calcination process at 350 ℃. A NOx removal efficiency test was performed for the catalytic ceramic filters with UV light in a humid condition. When graphene oxide (GO) and reduced graphene oxide (rGO) were present on the filter, the NOx removal efficiency was superior to that of the conventional ceramic filter. Most likely, this is due to an improvement in the adsorption properties of NOx molecules on graphene coated surfaces. As the concentration of graphene increased, higher NOx removal efficiency was confirmed.

Synthesis and Properties of Photo-curable Biomass-based Urethane Acrylate Oligomers (광경화형 바이오매스계 우레탄 아크릴레이트 올리고머의 합성 및 물성 연구)

  • Se-Jin Kim;Lan-Ji Baek;Byungjin Koo;Jungin Choi;JungMi Cheon;Jae-Hwan Chun
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.26-35
    • /
    • 2023
  • Generally, solvent-type coatings generate a large amount of volatile organic chemicals(VOC), which are carcinogenic substances, in the manufacturing process, and their use is regulated due to environmental problems. There is also the problem of resource depletion due to limited fossil fuels. Therefore, in this study, UV-curable urethane acrylate oligomers were synthesized with different contents of isosorbide, which is a biomass material, and proceeded to evaluate the physical properties of coatings. As the isosorbide contents increased, the viscosity, glass transition temperature, tensile strength, stain resistance, and pencil hardness increased, but elongation and flexibility decreased, and BOI-3 showed the best adhesion. The isosorbide content of the oligomer fixed at 20%, UV-curable urethane acrylate oligomer was synthesized according to the content ratio of polycaprolactone diol(PCL) and Ecoprol H1000(Ecoprol). As the PCL/Ecoprol content ratio increased, the glass transition temperature, elongation, and flexibility increased, but the tensile strength and pencil hardness decreased. It was confirmed that the adhesion and stain resistance increased by improving the surface bonding strength of PCL. All films of oligomers synthesized were transparent without discoloration.

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

Recycling Technique of Nano TiO2-Coated Silica-bead (나노광촉매가 코팅된 실리카 비드의 재생 연구)

  • Do, Young-Woong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3269-3273
    • /
    • 2009
  • In this study, recycling methods of nano $TiO_2$-coated silica-bead were conducted in order to solve a deactivation problem of bead that had been invented for decomposition of pollutants in aqueous solution. Surface cleansing was selected as the recycling method for used beads. The surface cleansing was done with four different solutions such as distilled water, surfactant, acetone, and ethyl alcohol(ethanol). The recycling process consists of cleansing and calcination. After cleaning the used (deactivated) beads, calcination was done at $100^{\circ}C$, $200^{\circ}C$ and $300^{\circ}C$ for 30 minutes, respectively. This process was repeated three times. The activity of the recycled bead was measured by photo-degradation of methylene blue. The result shows that acetone cleansing and calcination at $100^{\circ}C$ for 30 minutes was the most efficient recycling method.

Heat Resistant Low Emissivity Oxide Coating on Stainless Steel Metal Surface and Characterization of Emissivity (스테인리스강 금속 표면에 내열 저방사 산화물 코팅제 적용과 방사 특성 평가)

  • Lim, Hyung-Mi;Kwon, Tae-Il;Kim, Dae-Sung;Lee, Sang-Yup;Kang, Dong-Pil;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.649-656
    • /
    • 2009
  • Inorganic oxide colloids dispersed in alcohol were applied to a stainless steel substrate to produce oxide coatings for the purpose of minimizing emissive thermal transfer. The microstructure, roughness, infrared emissive energy, and surface heat loss of the coated substrate were observed with a variation of the nano oxide sol and coating method. It was found that the indium tin oxide, antimony tin oxide, magnesium oxide, silica, titania sol coatings may reduce surface heat loss of the stainless steel at 300${\circ}C$. It was possible to suppress thermal oxidation of the substrate with the oxide sol coatings during an accelerated thermal durability test at 600${\circ}C$. The silica sol coating was most effective to suppress thermal oxidation at 600${\circ}C$, so that it is useful to prevent the increase of radiative surface heat loss as a heating element. Therefore, the inorganic oxide sol coatings may be applied to improve energy efficiency of the substrate as the heating element.

Development of Drug Eluting Stent for the Treatment of Benign Biliary Stricture by Electro-spray Method (전기분사를 이용한 양성담관 협착 치료용 약물방출 스텐트 개발)

  • Shin, Il-Gyun;Kim, Dong-Gon;Kim, Han-Ki;Kim, Sang-Ho;Jeon, Dong-Min;Suh, Tae-Seok;Jang, Hong-Seok
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.163-168
    • /
    • 2012
  • Recently, along with technology development of endoscopic equipment, the stent technology has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. In this study, paclitaxel-eluting metal stents for treatment of biliary benign stenosis were developed through an electrospray-coating method. Polyether-based polyurethane (PELLETHANE 2363-80AE$^{(R)}$)) and paclitaxel were coated onto the surface of a metallic stent and Pluronic F127 was used as an additive. As a result, physicochemical characterization of paclitaxel via SEM, FTIR, contact angle and XRD techniques revealed the information of solid state of paclitaxel-loaded PU film. The in vitro release profile showed a slower release rate with a higher content of paclitaxel.