DOI QR코드

DOI QR Code

A Study on the Changes in Surface Properties According to Post-treatment of SLA 3D Printing Materials

SLA 3D 프린팅 소재의 후처리에 따른 표면특성 변화 연구

  • Bae, Seo Jun (Department of Chemical Engineering, Pukyong National University) ;
  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • 배서준 (국립부경대학교 화학공학과) ;
  • 임도진 (국립부경대학교 화학공학과)
  • Received : 2021.08.06
  • Accepted : 2021.09.02
  • Published : 2022.02.01

Abstract

In this study, a basic study was performed to systematically compare the changes in surface properties according to the post-processing method of the stereolithography (SLA) printing method, which is a photocuring 3D printing method, and to provide information on the post-processing method suitable for the application. Although it was possible to improve some of the transparency of the SLA-type output by regularly changing the irregular microstructure of the surface through polishing, it was difficult to secure sufficient transparency like glass. The change in contact angle characteristics due to grinding showed a tendency to slightly increase as the grinding time increased and the particle size of the sandpaper used was small, but the variation between samples was large and the average contact angle was 77~90°, showing no statistically significant difference. Surface treatment methods other than polishing were tried, and it was confirmed that it was possible to easily and simply improve the transparency by applying a commercially available vehicle scratch remover or silicone oil. In addition, a method for securing high transparency such as glass by using a scratch remover after sequential grinding while reducing the particle size of the sandpaper was proposed. Finally, even after surface treatment through polishing and various methods, it was difficult to secure a contact angle of 90° or more.

본 연구에서는 광경화 3D 프린팅 방식인 SLA (Stereo Lithography Apparatus) 방식 출력물의 후처리 방법에 따른 표면 특성의 변화를 체계적으로 비교하고, 용도에 맞는 후처리 방법에 대한 정보를 제공하기 위한 기초 연구를 수행하였다. SLA 방식 출력물은 연마를 통해 표면의 불규칙한 미세구조를 규칙적으로 변화시켜 투명도를 일부 개선할 수는 있었으나, 유리와 같은 충분한 투명도를 확보하기는 어려웠다. 연마에 따른 접촉각 특성 변화는 연마 시간이 증가할 수록 그리고 사용된 사포의 입도가 작을 수록 다소 증가하는 경향을 보였으나 샘플 간 편차가 크고 평균 77~90°의 접촉각을 나타내어 대부분 통계적으로 유의미한 차이를 보이지는 않았다. 연마 이외 다양한 방법을 통한 표면처리 방법이 시도되었으며, 시판되는 차량용 흠집제거제나 실리콘 오일 등을 도포하여 쉽고 간단하게 투명도를 개선하는 것이 가능함을 확인하였다. 또한, 입도 사이즈를 줄이며 순차적으로 연마한 후 흠집제거제를 사용함으로써 유리와 같은 높은 투명도를 확보할 수 있는 방법을 제안하였다. 마지막으로 연마와 다양한 방법을 통해 표면처리를 하더라도 접촉각은 90° 이상을 확보하기 어려웠으며 소수성의 특성을 필요로 하는 경우, 본 연구에서 사용된 다양한 방법 외 소수성 코팅과 같은 추가적인 처리가 필요함을 확인하였다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었습니다.

References

  1. Duballet, R., Baverel, O. and Dirrenberger, J., "Classification of Building Systems for Concrete 3D Printing," Autom. Constr., 83, 247-258(2017). https://doi.org/10.1016/j.autcon.2017.08.018
  2. Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C. and Spence, D. M., "Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences," Anal. Chem. 86, 3240-3253(2014). https://doi.org/10.1021/ac403397r
  3. Bhatia, S. N. and Ingber, D. E., "Microfluidic Organs-on-chips," Nat. Biotechnol. 32, 760-772(2014). https://doi.org/10.1038/nbt.2989
  4. He, Y., Wu, Y., Fu, J.-z., Gao, Q. and Qiu, J.-J., "Developments of 3D Printing Microfluidics and Applications in Chemistry and Biology: a Review," Electroanalysis 28, 1658-1678(2016). https://doi.org/10.1002/elan.201600043
  5. Lee, J.-Y., An, J. and Chua, C. K., "Fundamentals and Applications of 3D Printing for Novel Materials," Applied Materials Today 7, 120-133(2017). https://doi.org/10.1016/j.apmt.2017.02.004
  6. Murphy, S. V. and Atala, A., "3D Bioprinting of Tissues and Organs," Nat. Biotechnol., 32, 773-785(2014). https://doi.org/10.1038/nbt.2958
  7. Eom, T. Y., "3D Bioprinting Technology in Biochemical Engineering," Korean Chem. Eng. Res., 54, 285-292(2016). https://doi.org/10.9713/kcer.2016.54.3.285
  8. Rupal, B. S., Garcia, E. A., Ayranci, C. and Qureshi, A. J., "3D Printed 3D-Microfluidics: Recent Developments and Design Challenges," J. Interg. Design & Process Sci., 22, 5-20(2018).
  9. Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B. and Breadmore, M. C., "3D Printed Microfluidic Devices: Enablers and Barriers," Lab Chip 16, 1993-2013(2016). https://doi.org/10.1039/C6LC00284F
  10. Chen, C., Mehl, B. T., Munshi, A. S., Townsend, A. D., Spence, D. M. and Martin, R. S., "3D-printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review," Anal. Methods, 8, 6005-6012(2016). https://doi.org/10.1039/C6AY01671E
  11. Au, A. K., Huynh, W., Horowitz, L. F. and Folch, A., "3D-Printed Microfluidics," Angew. Chem. Int. Ed., 55, 3862-3881(2016). https://doi.org/10.1002/anie.201504382
  12. Ho, C. M. B., Ng, S. H., Li, K. H. H. and Yoon, Y.-J., "3D Printed Microfluidics for Biological Applications," Lab Chip 15, 3627-3637(2015). https://doi.org/10.1039/C5LC00685F
  13. Gao, H., Kaweesa, D. V., Moore, J. and Meisel, N. A., "Investigating the Impact of Acetone Vapor Smoothing on the Strength and Elongation of Printed ABS Parts," JOM 69, 580-585(2017). https://doi.org/10.1007/s11837-016-2214-5
  14. Bae, S. J. and Im, D. J., "Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems," Korean Chem. Eng. Res., 57, 706-713(2019). https://doi.org/10.9713/kcer.2019.57.5.706