• Title/Summary/Keyword: 표면볼륨렌더링

Search Result 21, Processing Time 0.027 seconds

Selective Rendering of Specific Volume using a Distance Transform and Data Intermixing Method for Multiple Volumes (거리변환을 통한 특정 볼륨의 선택적 렌더링과 다중 볼륨을 위한 데이타 혼합방법)

  • Hong, Helen;Kim, Myoung-Hee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.7
    • /
    • pp.629-638
    • /
    • 2000
  • The main difference between mono-volume rendering and multi-volume rendering is data intermixing. In this paper, we first propose a selective rendering method for fast visualizing specific volume according to the surface level and then present data intermixing method for multiple volumes. The selective rendering method is to generate distance transformed volume using a distance transform to determine the minimum distance to the nearest interesting part and then render it. The data intermixing method for multiple volumes is to combine several volumes using intensity weighted intermixing method, opacity weighted intermixing method, opacity weighted intermixing method with depth information and then render it. We show the results of selective rendering of left ventricle and right ventricle generated from EBCT cardiac images and of data intermixing for combining original volume and left ventricular volume or right ventricular volume. Our method offers a visualization technique of specific volume according to the surface level and an acceleration technique using a distance transformed volume and the effective visual output and relation of multiple images using three different intermixing methods in three-dimensional space.

  • PDF

Hybrid Data Intermixing and Visualization Ststem (하이브리드 데이터 혼합 및 가시화 시스템)

  • 홍헬렌;이선민;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.667-669
    • /
    • 2000
  • 과학적 가시화의 여러 응용분야에서 단일 데이터로부터 생성된 시각적 형태보다 다중 데이터로부터 생성된 시각적 형태를 필요로 한다. 단일 데이터 렌더링과 다중 데이터 렌더링의 가장 큰 차이점은 데이터 혼합으로 본 논문에서는 볼륨적 데이터와 표면적 데이터를 가진 하이브리드 데이터를 단계별로 혼합하여 이를 가시화하는 시스템을 개발하고자 한다. 하이브리드 데이터를 단계별로 혼합하여 가시화하기 위하여 조명단계후 혼합이 이루어지는 깊이 정보를 고려한 혼합방법과 조명단계 전 볼륨의 우선순위에 따라 데이터를 혼합하는 우선순위를 고려한 데이터 혼합방법을 제시한다. 구현결과로는 엔진몸체 데이터와 엔진 내부 벨브 및 옆면 데이터를 혼합하여 가시화한 결과를 사용자 인터페이스 상에서 보여준다. 본 제안 시스템은 단일 데이터의 표현 한계를 극복하고, 복잡한 형태에서 관심객체의 형태와 상대적 관계 및 위치 관계를 효과적으로 나타낼 수 있다.

  • PDF

A Virtual Sculpting System using Haptic Interface (햅틱 인터페이스를 이용한 가상 조각 시스템)

  • Kim Laehyun;Park Sehyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.682-691
    • /
    • 2004
  • We present a novel haptic sculpting system where the user intuitively adds to and carves out material from a volumetric model using new sculpting tools in the similar way to handling real clay Haptic rendering and model deformation are implemented based on volumetric implicit surface. We enhance previous volume-based haptic sculpting systems by presenting fast and stable force computation on 3D models to be deformed. In order to bridge the gap between fast haptic process (1 KHz) and much slower visual update frequency(~30Hz), the system generates intermediate implicit surfaces between two consecutive physical models being deformed. It performs collision detection and force computation on the intermediate surface in haptic process. The volumetric model being sculpted is visualized as a geometric model which is adaptively polygonized according to the surface complexity. We also introduce various visual effects for the real-time sculpting system including mesh-based solid texturing, painting, and embossing/engraving techniques.

Realtime Fur Simulation Rendering (실시간 Fur 시뮬레이션 렌더링)

  • Kim, Dong-Kyoum;Kim, Jee-In;Kim, Hyung-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.475-481
    • /
    • 2009
  • 실시간 렌더링에서 Fur는 모피등과 같이 매우 복잡한 표면을 표현하는 문제로 가상세계의 사실감을 높이는데 매우 중요한 요소이다. 복잡한 Fur의 실시간 렌더링을 위하여 다수의 방법이 제안되어 왔으나, Fur를 사실처럼 보여지게 하는 측면에서, 기존의 정적인 표현으로서는 한계점이 존재한다. 본 논문에서는 중력 및 외력에 의한 시뮬레이션을 통한 Fur의 실시간 Animation 방법을 제안한다. 기본 구조는 모피의 볼륨을 구성하는 n개의 Shell과 Shell의 표현을 보강하는 Fin의 구조로 이루어져 있고, Shell과 Fin의 공유 Vertex 배열을 통해 이 두 가지 구조를 하나로 통합한다. 이 공유 Vertex 배열에 본 논문에서 제안하는 중력 및 외력에 의한 시뮬레이션을 적용하여 공유 Vertex 배열을 변형시킨다. 이 후 변형된 공유 Vertex배열을 기반으로 Rendering을 수행하게 된다. 본 논문에서 제안하는 방법을 사용하여, 정적인 Fur Rendering이 아닌 동적으로 움직이는 Fur Rendering을 사용 함 으로써 좀 더 높은 현실감을 느낄 수 있을 것으로 기대한다.

  • PDF

A Study on Shape Registration Using Level-Set Model and Surface Registration Volume Rendering of 3-D Images (레밸 세트 모텔을 이용한 형태 추출과 3차원 영상의 표면 정합 볼륨 렌더링에 관한 연구)

  • 김태형;염동훈;주동현;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2002
  • In this paper, we present a new geometric active contour model based on level set methods introduced by Osher and Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image. Using anisotropic diffusion filtering for each slice, we have the result with reduced noise and extracted exact shape. Volume rendering operates on three-dimensional data, processes it, and transforms it into a simple two-dimensional image.

  • PDF

A Surface Reconstruction Method from Contours Based on Dividing Virtual Belt (가상벨트 분할에 기반한 등고선으로부터의 표면재구성 방법)

  • Choi, Young-Kyu;Lee, Seung-Ha
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.413-422
    • /
    • 2007
  • This paper addresses a new technique for constructing surface model from a set of wire-frame contours. The most difficult problem of this technique, called contour triangulation, arises when there are many branches on the surface, and causes lots of ambiguities in surface definition process. In this paper, the branching problem is reduced as the surface reconstruction from a set of virtual belts and virtual canyons. To tile the virtual belts, a divide-and-conquer strategy based tiling technique, called the BPA algorithm, is adopted. The virtual canyons are covered naturally by an iterative convex removal algorithm with addition of a center vertex for each branching surface. Compared with most of the previous works reducing the multiple branching problem into a set of tiling problems between contours, our method can handle the problem more easily by transforming it into more simple topology, the virtual belt and the virtual canyon. Furthermore, the proposed method does not involve any set of complicated criteria, and provides a simple and robust algorithm for surface triangulation. The result shows that our method works well even though there are many complicated branches in the object.

Virtual Angioscopy for Diagnosis of Carotid Artery Stenosis (경동맥 협착증 진단을 위한 가상혈관경)

  • 김도연;박종원
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.9
    • /
    • pp.821-828
    • /
    • 2003
  • The virtual angioscopy was implemented using MR angiography image of carotid artery Inside of the carotid artery is one of the body region not accessible by real optical endoscopy but can be visualized with virtual endoscopy. In order to determine the navigation path, we segmented the common carotid artery and internal carotid artery from the MR angiography image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric MRA image data. A stroke occurs when brain cells die because of decreased blood flow to the brain. The carotid artery is the primary blood vessel that supplies the blood flow to the brain. Therefore, the carotid artery stenosis is the primary reason of stroke. The virtual angioscopy is highly recommended as a diagnosis tool with which the specific Place of stenosis can be identified and the degree of stenosis can be measured qualitatively. Also, the virtual angioscopy can be used as an education and training tool for endoscopist and radiologist.

Virtual Bronchoscopy for Diagnosis of Tracheo-Bronchial Disease (기관지질환 진단을 위한 가상내시경)

  • Kim, Do-Yeon;Park, Jong-Won
    • The KIPS Transactions:PartB
    • /
    • v.10B no.5
    • /
    • pp.509-514
    • /
    • 2003
  • The virtual bronchoscopy was implemented using chest CT images to visualize inside of tracheo-bronchial wall. The optical endoscopy procedures are invasive, uncomfortable for patients and sedation or anesthesia may be required. Also, they have serious side effects such as perforation, infection and hemorrhage. In order to determine the navigation path, we segmented the tracheo-bronchial wall from the chest CT image. We used the coordinates as a navigation path for virtual camera that were calculated from medial axis transformation. We used the perspective projection and marching cube algorithm to render the surface from volumetric CT image data. The tracheobronchial disease was classified into tracheobronchial stenosis causing from inflammation or lung cancer, bronchiectasis and bronchial cancer. The virtual bronchoscopy is highly recommended as a diagnosis tool with which the specific place of tracheobronchial disease can be identified and the degree of tracheobronchial disease can be measured qualitatively, Also, the virtual bronchoscopy can be used as an education and training tool for endoscopist and radiologist.

3D Quantitative Analysis of Cell Nuclei Based on Digital Image Cytometry (디지털 영상 세포 측정법에 기반한 세포핵의 3차원 정량적 분석)

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.7
    • /
    • pp.846-855
    • /
    • 2007
  • Significant feature extraction in cancer cell image analysis is an important process for grading cell carcinoma. In this study, we propose a method for 3D quantitative analysis of cell nuclei based upon digital image cytometry. First, we acquired volumetric renal cell carcinoma data for each grade using confocal laser scanning microscopy and segmented cell nuclei employing color features based upon a supervised teaming scheme. For 3D visualization, we used a contour-based method for surface rendering and a 3D texture mapping method for volume rendering. We then defined and extracted the 3D morphological features of cell nuclei. To evaluate what quantitative features of 3D analysis could contribute to diagnostic information, we analyzed the statistical significance of the extracted 3D features in each grade using an analysis of variance (ANOVA). Finally, we compared the 2D with the 3D features of cell nuclei and analyzed the correlations between them. We found statistically significant correlations between nuclear grade and 3D morphological features. The proposed method has potential for use as fundamental research in developing a new nuclear grading system for accurate diagnosis and prediction of prognosis.

  • PDF

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.