• Title/Summary/Keyword: 폴리올

Search Result 245, Processing Time 0.027 seconds

Synthesis and Characterization of Waterborne Polyurethanes Based on Isophorone Diisocyanate and Mixed Polyols of Poly(tetramethylene glycol)/Polydimethylsiloxane Diol (이소포론 디이소시아네이트와 폴리(테트라메틸렌 글리콜)/폴리디메틸실록산 디올 혼합 폴리올을 사용한 수분산성 폴리우레탄의 합성과 특성 분석)

  • Lee, Ji Hye;Hong, Seongdon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • Linear and cross-linked waterborne polyurethanes (WPUs) based on isophorone diisocyanate and mixed diols of poly(tetramethylene glycol)/hydroxyethyl-terminated polydimethylsiloxane (PDMS-OH) were synthesized with dimethylol propionic acid as an anionic component, trimethylolpropane as a cross-linking agent, and butanediol as a chain extender and characterized. The hydrophobicity, $T_g$, stress-strain behaviors of the linear or cross-linked siloxane-containing WPU (WPU-Si) films with different PDMS content were analyzed by using water contact shape analyzer, energy dispersive spectrometer, dynamic mechanical analyzer, and universal testing machine. The results reveal that as the PDMS content increased, the hydrophobicity of WPU-Si films increased, $T_g$ moved to higher temperature, the breaking stress increased, and the breaking strain decreased.

A Study on the Synthesis of Organic-Inorganic Hybrid Waterborne Polyurethane by Using Graft Type Siloxane Polyol (그래프트형 실록산 폴리올을 이용한 유-무기 하이브리드 수분산 폴리우레탄의 합성에 관한 연구)

  • Lim, Jae-Woo;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • Organic- inorganic hybrid waterborne polyurethane (PUD) is synthesized by using hybrid polyol consist of carbonate (PCD), ester (PCL), and siloxane (PDSBP) in order to enhance anti-scratch property of PUD film. The diameter of graft type PUD emulsion is bigger than that of linear type PUD due to the graft structure of hydrophobic siloxane chain. The glass transition temperature of linear type PUD increase and the decomposition temperature of linear type PUD decrease with the content of PCD polyol. While, the decomposition temperature of graft type PUD almost same with increasing PDSBP content. The anti-scratch property and pencil hardness of graft type PUD improves as adding PDSBP polyol in the hybrid polyol system. When 9 wt% of PDSBP polyol is mixed, PUD films shows excellent anti-scratch property (~3.3 N), and pencil hardness (> 9 H).

Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon (활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환)

  • You, Su-Jin;Kim, Saet-Byul;Kim, Yong-Tae;Park, Eun-Duck
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/${\gamma}-Al_2O_3$ and Pt/H-mordenite were also investigated. Several techniques: $N_2$ physisorption, X-ray diffraction(XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with $H_2$ ($H_2$-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.

Direct Conversion of Cellulose into Polyols over Pt Catalysts Supported on Zeolites (제올라이트에 담지된 백금 촉매를 이용한 셀룰로우스의 폴리올로의 직접 전환)

  • You, Su Jin;Baek, In Gu;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.435-441
    • /
    • 2012
  • The direct conversion of cellulose into polyols in $H_2$ was examined over Pt catalysts supported on various zeolites, viz., mordenite, Y, ferrierite, and ${\beta}$. For comparison, Pt catalysts supported on ${\gamma}-Al_2O_3$, $SiO_2-Al_2O_3$, and $SiO_2$ were also tested. The physical properties of the catalysts were probed with $N_2$ physisorption. The surface acidity was measured with temperature programmed desorption of ammonia ($NH_3$-TPD). The Pt content was quantified with inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The Pt dispersion was determined with CO chemisorptions and transmission electron microscopy (TEM). The conversion of cellulose appeared to be mainly dependent on the reaction temperature and reaction time because it depends on the concentration of $H^+$ ions reversibly formed in hot water. Pt/H-mordenite (20) showed the highest yield to polyols among the tested catalysts. Pt/H-zeolite was superior to Pt/Na-zeolite for this reaction. The polyol yield was dependent on the surface acid density and the external surface area.

Synthesis and Mechanical, Dyeable Properties of Polyurethane with the Chain Extender Containing Tertiary Amine (3차 아민계 쇄연장제를 이용한 폴리우레탄 수지의 합성과 기계적, 염색 특성)

  • Noh, Si-Tae;Kim, Pyung-Jun;Jung, Chang-Nam
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.341-349
    • /
    • 1996
  • To improve the dyeability of polyurethane (PU) resin, low molecular weight diols containing dye site in the molecular structure was added as a chain-extender. PU resin were synthesized with the variations in the chain extender, polyol type, and hard segment/soft segment (HS/SS) ratio. When HS/SS ratio is 1.4 and dimethylolpropionic acid(DMPA) or N-butyldiethanolamine (BDEA) was used as a chain extender, because of heterogeneity of reaction mechanical properties were diminished. But when N-methyldiethanolamine (MDEA) was used as a DCE, and HS/SS ratio lowed to 1.3, mechanical properties and dyeability improved. In particular, when linear type 1,4-BD was formulated with MDEA, hydrolysis resistance and mechanical properties of PTMG type PU was improved. And initial elasticity, tensile strength and elongation could be controlled by the variation of HS/SS ratio, DCE mixing ratio of 1,6-HD or NPG.

  • PDF

Preparation and Properties of D Phase Emulsion by Silicone Oil (계면활성제 유화법에 의한 D상 유화물 제조와 특성)

  • Kim, Hyung-Jin;Jeong, Noh-Hee;Kim, Hong-Soo;Lee, Seung-Yeul;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.809-813
    • /
    • 1999
  • D phase emulsification has been developed and elucidated the emulsification mechanism by using phase diagrams. The process of D phase emulsification begins with the formation of isotropic surfactant solution, follows by formation of oil-in-surfactant (O/D) gel emulsion by dispersion of octamethylcyclotetra siloxane(OMCS) in the surfactant solution. Polyols were essential components for this experiments. To understand the function of polyols, the solution behaviors of nonionic surfactant/oil/water/polyol systems were investigated by the ternany phase diagrams of polyoxyethylene oleyl ether/OMCS/propylene glycol(PG) aqueous solutions. The solubility of oil in the isotropic surfactant phase was increased with the addition of PG. D phase emulsion was formed in the range of 70~90% of OMCS and 2.0~3.0 dyne/cm of interfacial tension and the structure was homogenious spherical and O/W type and its diameter was about $10{\mu}m$.

  • PDF

Preparation and Physical Properties of Two-Component Polyurethane Coatings Containing Alkyd Modified Polyesters (알키드 변성폴리에스테르를 함유하는 2성분계 폴리우레탄 도료의 제조와 도막물성)

  • Shin, Jae-Hyun;Kim, Sung-Gea;Ha, Kyung-Jin;Park, Hong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.907-913
    • /
    • 1997
  • Alkyd modified polyester was synthesized by the polycondensation of 1,4-butanediol, trimethylolpropane, adipic acid, and the intermediate obtained by the esterification of 3,5,5-trimethylhexanoic acid(THA) and trimethylolpropane, where the contents of THA as a component of alkyd polyol in the intermediate were changed according to 10, 20, and 30wt%, respectively. Two-component polyurethane coatings were prepared by blending the synthesized alkyd modified polyester with Desmodur L-75 as a component of polyisocyanate. Various tests for coating properties with the prepared coatings show that high fineness of grind of $8^-$point, short drying time of 2~3 hours, and long pot-life of 18~23 hours were observed with the content of 3,5,5-trimethylhexanoic acid.

  • PDF

Mechanical Properties on Vegetable Oil based eco-friendly Stainless Steel Coatings (식물성오일 기반의 친환경 스테인레스 스틸 코팅에 대한 기계적 특성)

  • Kim, Ki-Jun;Sung, Wan-Mo;Kim, Joo-Han;Jung, Hyung-Hak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.851-856
    • /
    • 2017
  • The mechanical properties of coating resin on stainless steel were measured by SEM, FT-IR spectra, tensile properties, mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly coating resin, we have synthesized the solvent-free coating resin to be coating on metals such as stainless steel. The properties of the synthesized coating resin to be contained polyols, MDI, silicone surfactant, fillers and vegetable oil(castor oil), that they have highly stronger in intensity and longer durability than general coating resin of polyurethane resin on stainless steel. The rigid segments of polyurethane in mechanical properties of coatings were due to unsaturated vegetable oil and the increase mole % of [NCO/OH]. In conclusion, the coating microstructure with castor oil can be good material for coatings of anticorrosion of metal substrates such as stainless steel.

Enhancement of Mechanical Properties of 2K Polyurethane Adhesives via Forming Ionic Bonds (이온결합 형성에 따른 이액형 폴리우레탄 접착제의 기계적 특성 향상)

  • Kwon, Haeun;Kim, Doo Hun;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.128-135
    • /
    • 2021
  • In this study, the acid polyols containing acid groups were synthesized, the novel polyurethane adhesive was developed by introducing the acid polyol by content. The acid polyols were introduced, the mechanical properties showed the maximum value when the acid content was 0.1 to 0.3 wt%, and it was confirmed that the mechanical properties and adhesive strength decreased at the content higher than 0.5 wt%. As the acid group, carboxylic acid and sulfuric acid were introduced to compare properties, and carboxylic acid showed stronger hydrogen bonding potential than sulfuric acid and improved mechanical properties. In addition, the correlation between particle size and mechanical properties was confirmed by introducing ZnO and CaCO3. When ZnO and CaCO3 were introduced, an ionic bond was formed with an acid group, and it was confirmed that mechanical properties were increased.

Removal of Aqueous Boron by Using Complexation of Boric Acid with Polyols: A Raman Spectroscopic Study (폴리올과 붕산의 착화합물 형성원리를 이용한 수용액 중의 보론 제거에 관한 라만 분광학 연구)

  • Eom, Ki Heon;Jeong, Hui Cheol;An, Hye Young;Lim, Jun-Heok;Lee, Jea-Keun;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.808-813
    • /
    • 2015
  • Boron is difficult to be removed from seawater by simple RO (reverse osmosis) membrane process, because the size of boric acid ($B(OH)_3$), the major form of aqueous boron, is as small as the nominal pore size of RO membrane. Thus, the complexation of boric acid with polyols was suggested as an alternative way to increase the size of aqueous boron compounds and the complexation behavior was investigated with Raman spectroscopy. As a reference, the Raman peak for symmetric B-O stretching vibrational mode both in boric acid and borate ion (${B(OH)_4}^-$) was selected. A Raman peak shift ($877cm^{-1}{\rightarrow}730cm^{-1}$) was observed to confirm that boric acid in water is converted to borate ion as the pH increases, which is also correctly predicted by frequency calculation. Meanwhile, the Raman peak of borate ion ($730cm^{-1}$) did not appear as the pH increased when polyols were applied into aqueous solution of boric acid, suggesting that the boric acid forms complexing compounds by combining with polyols.