• Title/Summary/Keyword: 폴리비닐 알코올 섬유

Search Result 74, Processing Time 0.024 seconds

Fire Resistance of the Concrete Corresponding to the Various Fiber Contents and Heating Curves (섬유의 종류 및 온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.101-107
    • /
    • 2008
  • This study investigated fundamental characters of the concrete according to various fiber types and contents and their properties of spatting resistance and residual compressive strength after fire test corresponding to ISO and RABT heating corves. The results were summarized as following. The Flowability was gradually declined as the increase of fiber contents, and it was the most favorable with nylon(NY) fibers. The decrease of air contents due to increasing fiber contents was in order by polypropylene(PP), polyvinyl alcohol(PVA) and NY fibers. The compressive strengths were over 40 MPa at 7 days and 50 MPa at 28 days. It was in order by PVA, PP and NY fibers. For the spatting properties, all specimens were prevented at ISO heating curve. In the other hand, the partial spatting at the surface occurred on the plain without fibers, but it was prevented over 0.10 % of PVA and 0.05 % of PP and NY fibers at the RABT heating curve.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

A Study on the Preparation and Properties of Poly(vinyl alcohol)/Chitosan Blend Films (폴리비닐알코올/키토산 블렌드 필름의 제조 및 그 특성에 관한 연구)

  • Jeong, Min-Gi;Son, Tae-Won;Kim, Young-Hun;Cho, Jin-Won;Kim, Dae-Sun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.321-322
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) is a polymeric biomaterial that obtained by the saponification of poly(vinyl acetate) (PVAc). It has a nontoxic and water-soluble synthetic polymer, and has excellent biodegradability, biocompatibility, ability of film forming, and hydrophilic property, which is widely used in biochemical and biomedical applications.$\^$1)/ Chitosan is one of a few natural cationic polysaccharides that can be obtaiend by alkaline deacetylation of chitin which is the second most abundant polymeric material in the earth.$\^$2)/ (omitted)

  • PDF

Preparation of High Molecular Weight Atactic Poly(vinyl alcohol)/Dye Complex Film (고분자량 혼성배열 폴리비닐알코올/염료 복합체 필름의 제조)

  • Park, Joo-Min;Kim, Sam-Soo;Lyoo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.48-51
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) obtained by the saponification of poly(vinyl ester) like poly(vinyl acetate) or poly(vinyl pivalate) is a linen. semicrystalline polymer, which have been widely used as fibers for clothes and industries, films, membranes, medicines for drug delivery system, and cancer cell-killing embolic materials[1-3]. PVA fibers and films have high tensile and compressive strengths, high tensile modulus, and good abrasion resistance due to its highest crystalline lattice modulus. (omitted)

  • PDF

Photochromic and thermal properties of poly (Vinyl alcohol)/ $H_6P_2W_{18}O_{62}$ hybrid membranes (폴리비닐알코올 $H_6P_2W_{18}O_{62}$ hybrid membranes의 광색 및 열적 특성)

  • Jian Gong;Kim, Hak-Yong;Lee, Duck-Rae;Bin Ding;Xiangdan Li
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.459-461
    • /
    • 2002
  • A new class of materials based on organic and inorganic species combined at a molecule level has obtained more attention recently[1]. HPA(heteropolyacid) shows unmatched applied perspective in terms of synthesis chemistry, analysis chemistry, biology, medicine and materials science[2]. As a potential photochemical material, the hybrid system of HPA and polymer has been investigated. However, the design and synthesis of heteropolyacid-based hybrids, which are at the forefront of the materials chemistry research, is still in its infancy. (omitted)

  • PDF

Effect of Molecular weight of Atactic Poly(vinyl alcohol) (PVA) on the Polarizing Efficiency of PVA/Azo Dye Polarizer (PVA/아조염료계 편광필름의 편광효율에 따른 혼성배열 폴리비닐알코올의 분자량 효과)

  • Park, Joo-Min;Kim, Sam-Soo;Lyoo, Won-Seok
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.104-107
    • /
    • 2003
  • Poly(vinyl alcohol) (PVA) obtained by the saponification of poly(vinyl ester) like poly(vinyl acetate) o. poly(vinyl pivalate) is a linear semicrystalline polymer, which has been widely used as fibers for clothes and industries, films, membranes, medicines for drug delivery system, and cancer cell-killing embolic materials[1-3]. PVA fibers and films have high tensile and compressive strengths, high tensile modulus, and good abrasion resistance due to its highest crystalline lattice modulus. (omitted)

  • PDF

Preparation of Atactic Poly(vinyl alcohol) Hydrogel by Glutaraldehyde Crosslinking (글루타르알데히드 가교에 의한 혼성배열 폴리비닐알코올 수화겔의 제조)

  • Won Seok Lyoo;In Seok Seo;Byung Chul Ji
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.324-325
    • /
    • 2001
  • Poly(vinyl alcohol) (PVA) is useful for biomaterials such as contact lens, drug delivery system, and biological tissues, because of good biocompatibility and no toxicity. Particularly, hydrogels have unique position in biomaterial fields because of their high water contents.[1-2] Because atactic PVA (a-PVA) is very weak in water, a-PVA need to be chemically crosslinked with crosslinking agent such as glutaradehyde to prepare PVA hydrogels with high water-resistance and good physical properties.[3] (omitted)

  • PDF

Preparation and Drawing Property of Poly(vinyl alcohol) Film (폴리비닐알코올 필름의 제조 및 연신 특성)

  • Kim, Hun Min;Lee, Jungeon;Park, Jae Min;Park, Jae Hyeung;Choi, Jin Hyun;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.147-152
    • /
    • 2021
  • Bulk polymerization was used to produce poly(vinyl acetate) with different molecular weights, which were then saponified to prepare poly(vinyl alcohol) (PVA) with different molecular weights. With Pn of 2,060 and 3,240, the optimum film formation concentrations of PVA were found 7.5wt.% and 6.5wt.%, respectively. The drawing characteristics of the PVA film prepared at the optimum film formation concentrations were experimented, as well as the thermal characteristics of the PVA film based on the drawing ratio were observed. When the drawing velocity was fixed, it was found that the drawing ratios of all samples decreased as the heat band gap increased, and the melting temperature of the PVA film slightly increased as the drawing ratio increased regardless of the Pn of PVA.

Fiber blending Ratio Effect on Tensile Properties of Hybrid Fiber Reinforced Cement-based Composites under High Strain Rate (고변형속도 조건에서 섬유 혼합비가 하이브리드 섬유보강 시멘트복합체의 인장특성에 미치는 영향)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Bo-Kyeong;Lee, Sang-Kyu;Kim, Gyeong-Tae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.147-148
    • /
    • 2017
  • In this study, the tensile properties of mono and hybrid fiber reinforced cement-based composite according to fiber blending ratio under the high strain rate was evaluated. Experimental results, the HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. Also, the fracture toughness was greatly improved because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate 101/s.

  • PDF

Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites (개질된 벤토나이트가 혼입된 폴리비닐알코올/벤토나이트 나노복합 필름의 제조 및 특성분석)

  • Ji, Byung Chul;Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Han, Myung-Dong;Kim, Ui Ju;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.161-167
    • /
    • 2021
  • Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.