Browse > Article
http://dx.doi.org/10.5764/TCF.2021.33.3.161

Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites  

Ji, Byung Chul (Department of Textile System Engineering, Kyungpook National University)
Yang, Seong Baek (Department of Biofibers and Biomaterials Science, Kyungpook National University)
Lee, Jungeon (Department of Biofibers and Biomaterials Science, Kyungpook National University)
Park, Jae Min (Department of Biofibers and Biomaterials Science, Kyungpook National University)
Han, Myung-Dong (HANS InTech Co., Ltd.)
Kim, Ui Ju (HANS InTech Co., Ltd.)
Yeum, Jeong Hyun (Department of Biofibers and Biomaterials Science, Kyungpook National University)
Publication Information
Textile Coloration and Finishing / v.33, no.3, 2021 , pp. 161-167 More about this Journal
Abstract
Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.
Keywords
bentonite; nano-clay; modification; poly(vinyl alcohol); solution casting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Chen, Y. Li, Y. Zhang, and Y. Zhu, Preparation and Characterization of Graphene Oxide Reinforced PVA Film with Boric Acid as Crosslinker, J. Appl. Polym. Sci., 132(22), 42000(2015).
2 Y. Li, T. Yang, T. Yu, L. Zheng, and K. Liao, Synergistic Effect of Hybrid Carbon Nanotube-Graphene Oxide as a Nanofiller in Enhancing the Mechanical Properties of PVA Composites, J. Mater. Chem., 21(29), 10844(2011).   DOI
3 K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, Synthesis and Properties of Polyimide-Clay Hybrid, J. Polym. Sci., Part A: Polym. Chem., 31(10), 2493(1993).   DOI
4 J. H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, Poly(vinyl alcohol) Nanocomposites with Different Clays: Pristine Clays and Organoclays, J. Appl. Polym. Sci., 90(12), 3208(2003).   DOI
5 T. Wang, M. Turhan, and S. Gunasekaran, Selected Properties of Ph-Sensitive, Biodegradable Chitosan-Poly(Vinyl Alcohol) Hydrogel, Polym. Int., 53(7), 911(2004).   DOI
6 M. Zagho and M. Khader, The Impact of Clay Loading on the Relative Intercalation of Poly(Vinyl Alcohol)-Clay Composites, J. of Materials Science and Chemical Engineering, 4(10), 20(2016).   DOI
7 C. C. Yang, Y. J. Lee, and J. M. Yang, Direct Methanol Fuel Cell(DMFC) based on PVA/MMT Composite Polymer Membranes, J. Power Sources, 188(1), 30(2009).   DOI
8 D. Mondal, M. M. R. Mollick, B. Bhowmick, D. Maity, M. K. Bain, D. Rana, A. Mukhopadhyay, K. Dana, and D. Chattopadhyay, Effect of Poly(vinyl pyrrolidone) on the Morphology and Physical Properties of Poly(vinyl alcohol)/sodium Montmorillonite Nanocomposite Films, Prog. Nat. Sci., 23(6), 579(2013).   DOI
9 R. A. Schoonheydt, Smectite-type Clay Minerals as Nanomaterials, Clays and Clay Minerals, 50(4), 411(2002).   DOI
10 R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates, Chem. Mater., 6(7), 1017(1994).   DOI
11 B. Paliwal, W. B. Lawrimore, M. Q. Chandler, and M. F. Horstemeyer, Nanomechanical Modeling of Interfaces of Polyvinyl Alcohol(PVA)/clay Nanocomposite, Philos. Mag, 97(15), 1179(2017).   DOI
12 P. Cinelli, E. Chiellini, J. W. Lawton, and S. H. Imam, Properties of Injection Molded Composites Containing Corn Fiber and Poly(vinyl alcohol), J. Polym. Res., 13(2), 107(2006).   DOI
13 J. Ma, P. Xiang, Y. W. Mai, and L. Q. Zhang, A Novel Approach to High Performance Elastomer by Using Clay, Macromol. Rapid Commun., 25(19), 1692(2004).   DOI
14 A. Gautam and P. Komal, Synthesis of Montmorillonite Clay/poly(vinyl alcohol) Nanocomposites and their Mechanical Properties, J. Nanosci. Nanotechnol., 19(12), 8071(2019).   DOI
15 S. B. Yang, S. M. Park, D. J. Kwon, J. C. Shin, Y. Sabina, and J. H. Yeum, Novel Poly(vinyl alcohol)/Clay Nanocomposite Film Prepared by the Heterogeneous Saponification of Poly(vinyl acetate)/Clay Nanocomposite Film, Sci. Adv. Mater, 12(3), 319(2020).   DOI
16 M. Kokabi, M. Sirousazar, and Z. M. Hassan, PVA-clay Nanocomposite Hydrogels for Wound Dressing, Eur. Polym. J., 43(3), 773(2007).   DOI
17 S. B. Ogunlaja and R. Pal, Effects of Bentonite Nanoclay and Cetyltrimethyl Ammonium Bromide Modified Bentonite Nanoclay on Phase Inversion of Water-in-Oil Emulsions, Colloids Interfaces, 4(1), 2(2020).   DOI
18 T. Okada, Y. Seki, and M. Ogawa, Designed Nanostructures of Clay for Controlled Adsorption of Organic Compounds, J. Nanosci. Nanotechnol., 14(3), 2121(2014).   DOI
19 H. Qin, S. Zhang, C. Zhao, M. Feng, M. Yang, Z. Shu, and S. Yang, Thermal Stability and Flammability of Polypropylene/montmorillonite Composites, Polym. Degrad. Stab, 85(2), 807(2004).   DOI