• Title/Summary/Keyword: 포장도로관리시스템

Search Result 80, Processing Time 0.027 seconds

Evaluation of the Permanent Deformation Behavior on Geosynthetics-Reinforced Asphalt Pavement by using the Wheel Tracking Tests (휠트래킹 시험을 통한 토목섬유시트 보강 아스팔트포장의 소성변형 거동특성 평가)

  • Cho, Sam-Deok;Lee, Dae-Young;Kim, Jin-Hwan;Kim, Nam-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.3
    • /
    • pp.39-46
    • /
    • 2003
  • The major pavement distress types found in the domestic roadways include rutting, fatigue cracking, and reflection cracking which are results of the environment and repeated traffic loads. These distresses usually occur before pavements approach their design life, and therefore, a significant amount of national budget is spent for maintenance of roadway pavements. The purpose of this study is to establish a geosynthetics-asphalt pavement system. For the study, wheel tracking tests are conducted to analyze the controlling effect of geosynthetics on rutting of asphalt pavement. On the basis of these works, the reinforcement effect of geosynthetics on the rutting of the asphalt pavement is clarified and deformation characteristics of geosynthetics-asphalt mixture is examined.

  • PDF

Traffic Demand Forecasting Method for LCCA of Pavement Section (도로포장의 생애주기비용 분석을 위한 장기 교통수요 추정)

  • Do, Myungsik;Kim, Yoonsik;Lee, Sang Hyuk;Han, Daeseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2057-2067
    • /
    • 2013
  • Traffic demand forecasting for pavement management in the present can be estimated using the past trends or subjective judgement of experts instead of objective methods. Also future road plans and local development plans of a target region, for example new road constructions and detour plans cannot be considered for the estimate of future traffic demands. This study, which is the fundamental research for developing objective and accurate decision-making support system of maintenance management for the national highway, proposed the methodology to predict future traffic demands according to 4-step traffic forecasting method using EMME in order to examine significance of future traffic demands affecting pavement deterioration trends and compare existing traffic demand forecasting methods. For the case study, this study conducted the comparison of traffic demand forecasting methods targeting Daejeon Regional Construction and Management Administration. Therefore, this study figured out that the differences of traffic demands and the level of agent costs as well as user costs between existing traffic demand forecasting methods and proposed traffic demand forecasting method with considering future road plans and local development plan.

Development of Road Surface Management System using Digital Imagery (수치영상을 이용한 도로 노면관리시스템 개발)

  • Seo, Dong-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.35-46
    • /
    • 2007
  • In the study digital imagery was used to examine asphalt concrete pavements. With digitally mastered-image information that was filmed with a video camera fixed on a car travelling on road at a consistent speed, a road surface management system that can gain road surface information (Crack, Rutting, IRI) was developed using an object-oriented language "Delphi". This system was designed to improve visualized effects by animations and graphs. After analyzing the accuracy of 3-D coordinates of road surfaces that were decided using multiple image orientation and bundle adjustment method, the average of standard errors turned out to be 0.0427m in the X direction, 0.0527m in the Y direction and 0.1539m in the Z direction. As a result, it was found to be good enough to be put to practical use for maps drawn on scales below 1/1000, which are currently producted and used in our country, and GIS data. According to the analysis of the accuracy in crack width on 12 spots using a digital video camera, the standard error was found to be ${\pm}0.256mm$, which is considered as high precision. In order to get information on rutting, the physically measured cross sections of 4 spots were compared with cross sections generated from digital images. Even though a maximum error turned out to be 10.88mm, its practicality is found in work efficiency.

  • PDF

Development and Evaluation of High Speed weigh-in-motion system (고속축하중측정시스템의 개발과 평가)

  • Kim, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Maintenance of the roads and bridges is a major issue for all road administrators around the world, and various initiatives are being implemented in each region for the purpose of controlling the ever increasing road maintenance cost while ensuring the safety of the vehicles driving. Efforts for such initiatives have also been made in Asia and initiatives for managing heavy-weight vehicles have recently gained momentum in Korea and Japan. We have developed a technology for unevenly installing bar-shaped sensors (piezo quartz sensors) to enable dynamic axle load measurement at a highly accurate level, and have estimated our measurement accuracy of axle load/gross weight, etc. on an actual road. The measurement accuracy of the axle load/gross weight varies significantly depending on the number of sensors installed. In our implementation, the target accuracy was set to below ${\pm}5%$ for gross weight measurement so that automatic regulation can be applied. We have achieved our target by installing 8-point measurement system. However, to have this technology widely accepted, it was necessary to reduce the system size so that it can be easily implemented. Therefore, we have estimated the relationship between the measurement accuracy and the system size (number of measurement points), and have come up with the proposal of 3-point measurement as an optimum number of measurement points, and have estimated its performance on an actual road. Additionally, we evaluated the relationship between the measurement accuracy and vehicle velocity.

Support Modular System for Sustainable-Perpetual-Modular Road (지속가능한 장수명 모듈러 도로를 위한 지지 모듈러 시스템)

  • Donggyou Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • In this study, the performance of the support modular system, as substructure of the proposed sustainable-perpetual modular road system to reduce road construction time and maintenance costs was evaluated. A modular road system consisting of 4 support modular cross-beams with a lower curved surface was constructed on the test-bed. Six load cells and eight LVDTs were installed in the center part of two cross-beam support modular systems. Two loads, 50kN and 100kN, were applied to 15 points on the pavement slab to measure the load and displacement occurring in the modular road system. The measured displacements were less than 1 mm, so it is considered that there was no problem in the stability of the actual road. When comparing the two applied loads and the measured loads in the field test, it was considered that the load transmitted to the ground under the support modular system is very small. It is considered that the modular road system with the support modular system is applicable to the actual road site.

Selection of Probability Distribution of Pavement Life Based on Reliability Method (신뢰성 개념을 이용한 적정 포장 수명분포 선정)

  • Do, Myung-Sik;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.12 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • In this paper, we present the methodology about an optimal probability distribution selection as well as survival rate estimation with the national highway database from 1999 to 2008. Probability paper methods are adopted to estimate the parameters of each hazard model. The goodness-of-fit test, such as the Anderson-Darling statistics, was performed. As a result, we found that Lognormal distributionan is an appropriate distribution of newly constructed sections as well as overlayed sections. We also ascertained that the results of survival rate for pavement life between the proposed method and observed data are similar. Such a selection methodology and measures based on reliability theory can provide useful information for maintenance plans in pavement management systems as long as additional life data on pavement sections are accumulated.

Development of AR System for Asphalt Pavement Compaction Operation and Suggestion for Accompanying Education Program (AR을 이용한 아스팔트 포장 다짐공사 지원 시스템 구축 및 교육과정 제안)

  • Kim, Namho;Cho, Namjun;Kim, Noah
    • Journal of Practical Engineering Education
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • A pavement construction process consists of series of lay-down operation for pavement materials to form a designated thickness and compaction operation for the lay-down layer to form a designated strength. A technological breakthrough in pavement compaction equipment was made in last 15 years in western countries: intelligent compaction roller, that is equipped with GPS along with other pavement response sensors is becoming a game-changer in pavement construction. This paper introduces AR system that may be used in asphalt pavement compaction operation using intelligent compactor. Since AR technology is very new concept in road construction society, a suggestion for accompanying education program was also made for specific task group in pavement compaction operation. Since AR technology has not been introduced in asphalt pavement compaction operation, the AR compaction management would lead the construction quality of asphalt pavement to the beyond level.

Field Application of RFID for the Cavity Maintenance of Under Pavement (도로하부 공동의 유지관리를 위한 RFID의 현장 적용성 평가)

  • Park, Jeong Jun;Shin, Eun Chul;Kim, In Dae
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.459-468
    • /
    • 2019
  • Purpose: The cavity exploration of the lower part of the road is carried out to prevent ground-sinking. However, the detected communities cannot be identified by the cavity location and history information, such as repackaging the pavement. Therefore, the field applicability of RFID systems was evaluated in this study to enable anyone to accurately identify information. Method: During temporary recovery, tag recognition distance and recognition rate were measured according to underground burial materials and telecommunication tubes using RFID systems with electronic tag chips attached to the bottom of the rubber cap. Result: The perceived distance and perceived rate of depth for each position of the electron tag did not significantly affect the depth up to 15cm, but it did have some effect if the depth was 20cm. In addition, water effects from nearby underground facilities and rainfall are relatively small, and the effects of wind will need to be considered during the weather conditions of the road. Conclusion: The RFID tags for field application of the pavement management system store various information such as location and size of cavity, identification date, cause of occurrence, and surrounding underground facilities to maximize cavity management effect with a system that can be computerized and mobile utilization.

Design and construction of verification complex that checks the efficiency on water permeability of permeable pavement parking lot LID (투수 주차장형 LID 투수효율성 검증실험단지 설계 및 구축)

  • Lee, Eun Ku;Shin, Hyun Shuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.317-317
    • /
    • 2016
  • 저영향개발(Low Impact Development, LID) 시설들은 미국 일본 등 선진국을 중심으로 관련법에 따라 개발 및 적용 되어왔으나 국내에서는 최근에서야 LID 시설을 적용할 수 있는 제도적인 틀을 구축하고 있는 실정이며, 국내 여건에 맞는 LID 시설을 개발하여 그 효용성을 검증하기 까지는 상당한 시간이 소요될 것으로 판단된다. 서울시는 2014년 '서울특별시 빗물관리에 관한 조례 전부개정조례'를 발표함으로써 한국형 LID 시설을 대단위로 적용 하고 검증 할 수 있는 발판을 마련하였다. 서울시의 2014년 전부개정조례에 따르면 시장 및 구청장은 저영향개발 계획 수립의 실효성 확보를 위하여 저영항개발 사전협의 제도를 마련하여 시행하여야 하며, 시장은 저영향개발 지구단위계획을 수립하여야 한다. 이에 따라, 본 연구에서는 실제로 적용 가능한 투수포장 주차장을 설계 할 수 있도록 투수 주차장형 LID 시설을 검증할 수 있는 투수효율성 검증실험단지를 설계 및 구축 하였다. 과거 도심의 우수배제는 중앙 집중형 시스템으로 단기간에 우수를 차집하여 배제하는 방식이었으나, 근래에는 집중형 우수배제 시스템의 위험성, 경제성 그리고 용량한계 등 여러 가지 문제점이 부각되면서 분산형 시스템으로의 전환이 이루어지고 있다. 물순환도시 및 지속가능한 도시 등이 분산형 우수배제 시스템의 예이며, 주차장, 도로, 건물 등 불투수 표면으로부터의 우수를 지면으로 침투 및 침루시키는 방법 등을 활용하여 건전한 물순환을 꾀하고 있다. 침투 및 침루 능력은 각각 포장체 및 포장면 하부구조의 재료와 밀접한 관련이 있으며 재료의 선정은 하부구조의 안정성 확보를 고려하여 선택되어야 한다. 또한 우수 배제를 위한 유공관은 접합점에서 강도를 유지하면서 효율적으로 유수를 배제할 수 있어야 하며, 저류조 설치는 강수의 활용목적에 맞게 선정되어야 한다. 이러한 투수 주차장형 LID 시설은 하나의 시스템으로서 포장체의 재료에 따른 공학적 성질, 하부구조 구축방법 및 재료 선정 그리고 유공관 배열 등에 따라 그 시스템의 거동이 변화하므로 기존에 행해왔던 단순 재료실험으로는 투수성 주차장의 우수배제 시스템을 평가할 수 없다. 따라서 본 연구에서는 이를 검증할 수 있는 투수효율성 검증실험단지 설계 및 구축하였다.

  • PDF

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.