In order to establish an effective forest management plan, it is necessary to investigate tree management information such as tree height and DBH(Diameter at breast height). However, research on convergence and application of data acquisition technology to improve the efficiency of existing forest survey methods is insufficient. Therefore, in this study, tree management information was constructed and analyzed using point cloud data acquired through a 3D scanner. Data on the study site was acquired using fixed and mobile 3D scanners, and the efficiency of the mobile 3D scanner was presented through comparison of working hours. In addition, tree management information for object management was constructed by classifying vegetation by object using point cloud data, and by constructing information on chest height diameter and height. As a result of the accuracy evaluation compared with the conventional measurement method, the difference in tree height was 0.02-0.09m and DBH was 0.01-0.04m. If information on the location of vegetation and crowns of each object is constructed through additional research in the future, the efficiency of the work related to forest management information construction can be greatly increased.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.39
no.6
/
pp.401-408
/
2021
With the proposal of amendments to the Pedestrian Safety Act in 2021, when the amendment bill is passed in the near future, a general dimensional investigation of the sidewalks' physical condition, which is the basis of pedestrian safety, is expected to be legislated and made mandatory. Therefore, this study presented a affordable methodology for street environment survey using entry-level drones and examined the feasibility of conducting a complete survey of pedestrian paths by local governments nationwide. To this end, various street facilities in the experimental site were measured to compare and analyze the accuracy of the point cloud data. As a result of the analysis, it was found that the measurement error range satisfies the public surveying guidelines. If the methodology presented in this study is applied, it is expected that individual local governments will be able to make a significant contribution to monitoring the physical conditions of streets to improve the pedestrian environment in the near future.
Korean Journal of Construction Engineering and Management
/
v.25
no.3
/
pp.37-46
/
2024
Recently, 3D laser scanning technology, which can collect accurate and quick information on phenomena, has been attracting attention among smart construction technologies. 3D laser scanning technology can obtain information most similar to reality at construction sites. In this study, we would like to apply a new member identification method to an actual building and present the possibility of applying point cloud data, which can be collected using 3D laser scanning technology, to measuring progress at construction sites. In order to carry out the research, we collected location information for component identification from BIM, set a recognition margin for the collected location information, and proceeded to identify the components that make up the building from point cloud data. Research results We confirmed that the columns, beams, walls, and slabs that make up a building can be identified from point cloud data. The identification results can be used to confirm all the parts that have been completed in the actual building, and can be used in conjunction with the unit price of each part in the project BOQ for prefabricated calculations. In addition, the point cloud data obtained through research can be used as accurate data for quality control monitoring of construction sites and building maintenance management. The research results can contribute to improving the timeliness and accuracy of construction information used in future project applications.
본 고는 ISO/IEC JTC 1/SC 29/WG 7 MPEG(Moving Picture Experts Group) 3DG(3D Graphics coding) 그룹에서 진행되고 있는 포인트 클라우드 데이터 압축 표준 기술 중 하나인 G-PCC(Geometry-based Point Cloud Compression) 표준에 대하여 설명하고자 한다. G-PCC는 포인트 클라우드의 기하 정보와 속성 정보를 3차원 공간에서 서로 다른 기술을 이용하여 압축하는 표준으로, 무손실 압축 방법의 경우 10:1의 압축율을 제공하고 손실 압축의 경우 35:1 정도의 압축율을 보인다. 본 고에서는 G-PCC의 기하 정보와 속성 정보의 압축 방법을 상세히 설명하고 같은 기능을 수행하는 압축 기술 간의 성능을 비교하고자 한다.
KIPS Transactions on Software and Data Engineering
/
v.12
no.12
/
pp.505-518
/
2023
3D point cloud semantic segmentation is a computer vision task that involves dividing the point cloud into different objects and regions by predicting the class label of each point. Existing 3D semantic segmentation models have some limitations in performing sufficient fusion of multi-modal features while ensuring both characteristics of 2D visual features extracted from RGB images and 3D geometric features extracted from point cloud. Therefore, in this paper, we propose MMCA-Net, a novel 3D semantic segmentation model using 2D-3D multi-modal features. The proposed model effectively fuses two heterogeneous 2D visual features and 3D geometric features by using an intermediate fusion strategy and a multi-modal cross attention-based fusion operation. Also, the proposed model extracts context-rich 3D geometric features from input point cloud consisting of irregularly distributed points by adopting PTv2 as 3D geometric encoder. In this paper, we conducted both quantitative and qualitative experiments with the benchmark dataset, ScanNetv2 in order to analyze the performance of the proposed model. In terms of the metric mIoU, the proposed model showed a 9.2% performance improvement over the PTv2 model using only 3D geometric features, and a 12.12% performance improvement over the MVPNet model using 2D-3D multi-modal features. As a result, we proved the effectiveness and usefulness of the proposed model.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2012.07a
/
pp.417-418
/
2012
본 논문에서는 3차원 데이터를 이용한 효율적인 실내 공간 표현 기법을 제안한다. 제안하는 기법은 3차원 데이터의 획득과 실내 구조 및 영상 정보를 표현하기 위한 표현 복원으로 구성된다. 3차원 데이터는 레이저 거리 측정기(laser range finder, LRF)와 전방향(omni) 카메라를 통해 획득한 포인트 클라우드 공간 정보와 전방향 텍스쳐 영상으로 구성된다. 실내 구조를 복원하기 위해, 획득한 포인트 클라우드를 복셀 격자 기반의 샘플링 기법을 통해 균일화하고 포아송 표면 재구성(Poisson surface rocoostruction) 기법을 통해 3차원 메쉬를 생성한다. 그리고 전방향 텍스쳐 영상과 3차원 메쉬외 기하학적 관계를 이용한 텍스쳐 매핑 기법을 통해 최종적으로 3차원 메쉬 표면을 복원한다. 실험 결과를 통해 제안하는 기법이 실내 공간을 효과적으로 표현함을 확인한다.
Point cloud data can be expressed in a specific coordinate system of a data set with a large number of points, to represent any form that generally has different characteristics in the three-dimensional coordinate space. This paper is aimed at finding a cylindrical pipe in the point cloud of the three-dimensional coordinate system using RANSAC, which is faster than the conventional Hough Transform method. In this study, the proposed cylindrical pipe is estimated by combining the results of parameters based on two mathematical models. The two kinds of mathematical models include a sphere and line, searching the sphere center point and radius in the cylinder, and detecting the cylinder with straightening of center. This method can match cylindrical pipe with relative accuracy; furthermore, the process is rapid except for normal estimation and segmentation. Quick cylinders matching could benefit from laser scanning and reverse engineering construction sectors that require pipe real-time estimates.
본 연구는 3D 이미지 스캔 데이터 기반으로, SWEEPING 형상을 효과적으로 역설계하는 기술에 관한 것이다. 사용자가 미리 정의한 형상 단면 모델 데이터베이스를 이용해, 3차원 SWEEPING 형상을 자동으로 역설계하는 알고리즘을 제안한다. 이를 위해, 3D 이미지 스캔 데이터인 포인트 클라우드에서 자동으로 추출한 단면 포인트들을 처리해, 파라메터 정보를 추출하고, 미리 정의된 형상 단면들과 상호간 유사도를 비교한 후, 가장 유사한 형상 단면을 획득한다. 이러한 기술은 SWEEPING 형상 모델의 역설계 과정을 자동화하는 데 도움을 줄 것이다.
Journal of the Korea Society of Computer and Information
/
v.28
no.12
/
pp.191-199
/
2023
In this paper, we propose a method to extract the features of five sensor-only facilities built as infrastructure for autonomous cooperative driving, which are from point cloud data acquired by LiDAR. In the case of image acquisition sensors installed in autonomous vehicles, the acquisition data is inconsistent due to the climatic environment and camera characteristics, so LiDAR sensor was applied to replace them. In addition, high-intensity reflectors were designed and attached to each facility to make it easier to distinguish it from other existing facilities with LiDAR. From the five sensor-only facilities developed and the point cloud data acquired by the data acquisition system, feature points were extracted based on the average reflective intensity of the high-intensity reflective paper attached to the facility, clustered by the DBSCAN method, and changed to two-dimensional coordinates by a projection method. The features of the facility at each distance consist of three-dimensional point coordinates, two-dimensional projected coordinates, and reflection intensity, and will be used as training data for a model for facility recognition to be developed in the future.
The point cloud content is immersive content recorded by acquiring points and colors corresponding to the real environment and objects having three-dimensional location information. When a point cloud content consisting of three-dimensional points having position and color information is enlarged and rendered, the gap between the points widens and an empty hole occurs. In this paper, we propose a method for improving the quality of point cloud contents through inverse transformation-based interpolation using depth information for holes by finding holes that occur due to the gap between points when expanding the point cloud. The points on the back are rendered between the holes created by the gap between the points, acting as a hindrance to applying the interpolation method. To solve this, remove the points corresponding to the back side of the point cloud. Next, a depth map at the point in time when an empty hole is generated is extracted. Finally, inverse transform is performed to extract pixels from the original data. As a result of rendering content by the proposed method, the rendering quality improved by 1.2 dB in terms of average PSNR compared to the conventional method of increasing the size to fill the blank area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.