• 제목/요약/키워드: 평행유동

검색결과 114건 처리시간 0.021초

평행류 열교환기의 헤더내 열유동 해석 (Thermal and Flow Analysis inside the Header of a Parallel Flow Heat Exchanger)

  • 이관수;오석진
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.802-809
    • /
    • 2000
  • This study numerically analyzes the thermal and flow characteristics inside the header in PFHE(parallel-flow heat exchanger) by employing a three-dimensional turbulence modeling. The following quantities are examined by varying the injection angle of the working fluid, the location of entrance and the shape of entrance: flow nonuniformity, heat transfer rate, and flow distribution in each passage. The result shows that the degree of significance among the parameters affecting the header part is in the order of the injection angle, the shape of entrance, and the location of entrance. The result also indicates that heat transfer rates compared to the reference model are increased by about 152% for the angle of injection of -$20^{\circ}C$, by about 127% for the shape of entrance with right and left long rectangular form, and by about 108% for the location of entrance located at the lowest Position.

  • PDF

평행평판 간극에서 전기장의 강도변화에 따른 분산계 ER유체의 유량-압력강하 특성 (Flow Rate-Pressure Drop Characteristics of Dispersive ER Fluid According to Change of Electric Field Strength in Clearance between Parallel Plates)

  • 장성철;염만오;김도태
    • 한국공작기계학회논문집
    • /
    • 제12권1호
    • /
    • pp.78-83
    • /
    • 2003
  • Electro-rheological(ER) fluids are suspensions in which rheological properties show an abrupt change with variation of electric fields. We modeled the parallel-plates relating to ER-Valve system and yielded shear stress according to the strength of electric field. The purpose of the present study is to examine the flow characteristics of ER fluids according to the strength of electric field between parallel-plates. Then the steady relationship between pressure drop and flow rate of the ER fluids between parallel-plates under application of an electric fields was measured. The pressure drop and flow rates of ER fluids under the application of electric fields for steady flow were measured. For the experiment, we used the ER fluids, 35w% zeolite having hydrous particles and differential pressure gauge. This test reviewed experiment for the special changes of ER fluids in the steady flow condition.

평행평판내 비대칭 난류유동과 열전달의 예측 (Prediction of Asymmetric Turbulent Fluid Flow and Heat Transfer in the Parallel Plates)

  • 오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.303-310
    • /
    • 1998
  • We report on the analytical results of examination of fully developed asymmetric flow and heat transfer between parallel plane plates. The asymmetry was introduced by roughening one of the plane while the other was left smooth. The integral method together with a turbulence model based on modified Prandtl's mixing length theory for the rough was used to determine the velocity distribution and friction. The temperature distrtibution is then predicted and heat transfer coefficients are calculated. The present paper shows that the heat transfer increases more than the friction factor for a given roughness structure. Generally the results show the strong effect of asymmetry on engineering parameters. Furthermore it is the roughness structure which influences the nature of asymmetry and heat transfer.

  • PDF

ER유체의 유동특성에 관한 실험적 연구 III (평행평판 간극내의 유량-압려강하 특성) (Experimental Investigation on the Flow Characteristics of ER Fluids III (3nd Report, Flow-Pressure Drop Characteristics clearance between Two Parallel Plate))

  • 김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.399-404
    • /
    • 1999
  • Electro-rheological(ER) fluids are suspensions which show an abrupt increase in rheological properties under electric fields. The rheological response is very rapid and reversible when the electric field is imposed and/or removed. Therefore, there are many practical applications using the ER fluids. The purpose of the present study is to examine the flow characteristics of electro-rheological fluids. The field-dependent yield stress are obtained from experimental investigation on the Bingham property of the ER fluid. Then the steady relationshup between pressure drop and flow rate of the ERF was two fixed parallel-plates was measured under application of an electric fields. The electrical and rheological properties of zeolite based electro-rheological fluids were reported.

  • PDF

다공성 모델링을 이용한 평행류 열교환기의 열.유동 해석 (Heat and Flow Analysis of a Parallel Flow Heat Exchanger Using Porous Modeling)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1784-1792
    • /
    • 2001
  • Numerical analysis on a parallel flow heat exchanger(PFHE) is performed using 2 dimensional turbulent porous modeling. This modeling can consider three-dimensional configuration of passage (flat tube with micro-channels), and the stability and accuracy of numerical results are improved. The geometrical parameters(e.g., the position of separators, inlet/outlet, and porosity of passages of a PFHE) are varied in order to examine the flow and thermal characteristics and flow distribution of the single phase multiple passages system. The flow non-uniformities along the paths of the PFHE are observed to evaluate the thermal performance of the heat exchanger. The location of inlet affects the heat transfer, and the location of outlet affects the pressure drop. The porosity with the optimum thermal performance is around 0.53.

순수한 찬물속에 잠겨있는 경사진 등온벽면 부근의 자연대류에 관한 수동력학적 안정성 (The Hydrodynamic Stability of Natural Convection Flows Adjacent to an Inclined Isothermal Surface Submerged in Cold, Pure Water)

  • 황영규;장명륜
    • 설비공학논문집
    • /
    • 제2권4호
    • /
    • pp.268-278
    • /
    • 1990
  • Hydrodynamic stability equations are formulated for natural convection flows adjacent to a heated or cooled, inclined, isothermal surface in pure water at $4^{\circ}C$, where the density variation with temperature becomes nonlinear. The resulting stability equations, when reduced to ordinary differential equations by a similarity transformation, constitute a two-point boundary-value problem, which was solved numerically. It is found from the obtained stability results that the neutral stability curves are systematically shifted to have lower critical Grashof numbers, as the inclination angle of upward-facing plate increases. Also, the nose of the neutral stability curve becomes blunter as the angle increases. It implies that the greater the inclination of the upward-facing plate, the more susceptible of the flow to instability for the wide range of disturbance wave number and frequency.

  • PDF

평행류 열교환기의 열.유동 해석 및 최적화 (Thermal and flow analysis for the optimization of a parallel flow heat exchanger)

  • 이관수;정지완;유재흥
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.229-239
    • /
    • 1998
  • The present paper examines the thermal and flow characteristics of a parallel flow heat exchanger and investigates the effects of the parameters on thermal performance by defining the flow nonuniformity. Thermal performance of a parallel flow heat exchanger is maximized by the optimization using Newton's searching method. The flow nonuniformity is chosen as an object function. The parameters such as the locations of separator, inlet, and outlet are expected to have a large influence on thermal performance of a parallel flow heat exchanger. The effect of these parameters are quantified by flow nonuniformity. The results show that the optimal locations of inlet and outlet are 19.73 mm and 10.9 mm, respectively. It is also shown that the heat transfer increases by 7.6% and the pressure drop decreases by 4.7%, compared to the reference model.

평행류 열교환기의 열.유동 특성에 대한 설계인자의 최적화 (Optimization of Design Factors for Thermal and Flow Characteristics of a Parallel Flow Heat Exchanger)

  • 정길완;이관수
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.640-651
    • /
    • 2000
  • For the heat and fluid flow analyses of a parallel flow heat exchanger, an improved model considering the effect of flat tube with micro-channels is proposed. The effect of flow distribution on the thermal performance of a heat exchanger is numerically investigated. The flow distribution is examined by varying geometrical parameters, i.e., the position of the separators and the inlet/outlet, and the aspect ratio of micro-channels of the heat exchanger. The flow nonuniformities along the paths of the heat exchanger are proposed and observed to evaluate the thermal performance of the heat exchanger. The optimization using ALM method has been accomplished by minimizing the flow nonuniformity. It is found that the heat transfer rate of the optimized model is increased by 6.0% of that of the reference heat exchanger model, and the pressure drop by 0.4%

수직휜이 부착된 평행평판 채널내의 유동 및 열전달에 관한 수치해석 (Numerical Analysis of Fluid Flow and Heat Transfer in a Parallel-Plate Channel with Transverse Fins)

  • 황기영;김홍제;모정하
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.642-653
    • /
    • 1995
  • An analysis is made of the laminar fluid flow and heat transfer characteristics in a parallel-plate channel to whose walls are fitted with a series of equidistant staggered fins placed transversely to the flow direction. The governing equations are solved numerically by a finite-volume method for elliptic flows. Based on the obtained solutions of flow and temperature fields, the effects of Reynolds number and various geometric parameters on the heat transfer performance and pressure drop are evaluated. A comparson of the heat transfer characteristics between the channels with and without staggered fins is also made.

  • PDF

경사진 평판에서의 국소물질전달 특성에 관한 실험적 연구 (An Experimental Study of Local Mass Transfer Characteristics on Inclined Flat Plate)

  • 유성연;조우식;조웅선
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1335-1341
    • /
    • 2011
  • 본 연구의 목적은 평행 평판과 경사진 평판의 물질전달 특성을 비교하여 경사각에 따른 유동의 박리와 재부착이 물질전달에 미치는 영향을 규명하는 것이다. 나프탈렌승화법을 사용하여 평판에서의 국소물질전달계수를 측정하였으며, 평판의 경사각은 $10^{\circ}$에서 $-10^{\circ}$까지 $5^{\circ}$간격으로 변화시키고 유동 속도는 2m/s에서 15m/s까지 변화시켰다. 양의 각으로 경사진 평판에서 국소 Sherwood 수는 경계층이 발달하면서 감소하는 경향을 보이고 있는며, 음의 각으로 경사진 평판의 경우는 재순환 와류의 박리점에서 최소값을 나타내고, 박리된 유동의 재부착점에서 최대값을 나타내었다. 평균 Sherwood 수는 음의 각과 양의 각 모두 평행 평판보다 낮았다.