• Title/Summary/Keyword: 평판의 고유진동수

Search Result 75, Processing Time 0.025 seconds

Free Vibration Analysis of Size and Position of hole in Square Plate (사각 평판에서 홀의 크기와 위치에 따른 자유진동해석)

  • 최경호;최태원;김형준;안찬우;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.664-667
    • /
    • 1997
  • In this study, it is attempted to obtain the optimized size of holes in 15 square plate models where a hole exists on every quadrant of a plate, and to get eigenvalues and mode shapes by performing free vibration analysis for each model. For free vibration analysis and optimization of' hole sizes, the uniaxial tension is applied for the loading condition. From the results of this study, it is known that more stable structures can be designed by changing the natural frequency depending on the location and the optuiiunl size of holes. and further studies are considered to be necessary for the basic design information.

  • PDF

Effect of Normal and Shear Strains in Core Material on Vibrational Characteristics of Aluminum Honeycomb Core Sandwich Plate (심재의 수직 및 전단 변형을 고려한 알루미늄 하니컴코아 샌드위치 평판의 진동특성 해석)

  • 손충열;김익태;변효인
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.89-94
    • /
    • 2000
  • Because the structural elements used in the automobile, astronautic and ship industries are put in dynamic loading environments, much interest is given to the damping of the structural elements, as well as high flexural rigidity and strength per density. Therefore, in this study, the structural damping value of the aluminum honeycomb sandwich plate(AHCP) has been experimentally extracted, and directly applied to the finite element, for the dynamic analysis of the plate considering the structural damping. The analysis results of this theory was compared with the results of the actual modal analysis method. It was observable that the two analyses concurred, establishing the structural damping and analysis method of the AHSP.

  • PDF

Analysis of the Free Vibrations of Rectangular Plates Using Database (데이터베이스를 이용한 사각평판의 자유진동 해석)

  • No, Seung-Hun;Jo, Han-Jung;Choe, Eun-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1978-1990
    • /
    • 2000
  • In this study, the free vibrations of the cantilever plate, which is one of the most frequently used elements in various machine structures, are analyzed and further the results are utilized to develop the methodology to predict and control the natural frequencies for designing stabilized systems. The proposed method has three major steps. The first step is the frequency response test to investigate the natural frequencies of some plates, then the database is constituted from experiments and the FEM, and finally the natural frequencies are predicted using the database to be cross-checked by the identification test. The result of this study will help design many different stable structures without any complicated calculations.

Structure-borne Noise Reduction of Plate using bead (비드를 이용한 평판의 구조소음 저감)

  • Kim, Ho-San;Sim, Hyoun-Jin;Kang, Kwi-Hyun;Jung, Dong-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.269-274
    • /
    • 2007
  • With the importance of comfortable environment, research about noise reduction of construction is consisting much. If construction receives the input force, noise will be generated thereby. We must predict vibration and noise characteristic to reduce structured borne noise, and construction which become a basis of such research is plate. In order to predict the radiating noise from the vibrating surface. It is required to know the velocity distribution of vibration surface exactly. It is good to use bead for reducing vibration and noise of plate. In this study, we have analyzed structure-borne noise of plate with bead and compare with plate that there is no bead about equal exciting force.

  • PDF

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.570-570
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.

Natural Frequency of a Rectangular Plate on Non-homogeneous Elastic Foundations (비균질 탄성 기초위에 놓여있는 직사각형 평판의 고유 진동수)

  • Hwang, Ju-Ik;Kim, Yong-Cheol;Lee, Taek-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.70-76
    • /
    • 1989
  • The natural frequencies of a rectangular plate on non-homogeneous elastic foundations were obtained by using the Ritz method and Galerkin method. The results of both methods using the different type of trial functions were also compared. Furthermore, the effects of the variation of boundary conditions, the stiffness of the foundation spring, the dimension ratio of the plate were investigated. As a result, the Galerkin method can be used to obtain the accurate solution and can be effectively used to design the foundation bed.

  • PDF

A Study on the Measurement of Rigidities of Stiffened Plates by Vibration Method (振動法 에 의한 補强平板 의 剛性測定硏究)

  • 김천욱;남준우;원종진;한승봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.174-180
    • /
    • 1985
  • A new measuring technique for the rigidities of stiffened plated is presented. The equations relating the rigidities of stiffened plates and the natural frequencies of a cantilever plate are derived and the rigidities are determined using the measured natural frequencies of the plate. The static deflection tests are conducted for checking the validity of this method. For unstiffened plates the measured rigidities are good agreement with the theoretical values and the experimental results of deflection tests. In the case of stiffened plates the measured rigidities closely matched with the results of deflection tests. It has been also demonstrated that this measuring technique can be utilized in determining the rigidities of arbitrarily stiffened plates.

In-Plane Vibration Analysis of General Plates (일반 평판의 면내 진동 해석)

  • Choi, M.S.;Yeo, D.J.;Byun, J.H.;Suh, J.J.;Yang, J.K.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.78-85
    • /
    • 2007
  • In order to analyze accurately the vibration of a structure by using the finite element method (FEM), we have to model a analytical structure as a numerical model with many degrees-of-freedom. However, in this case, the FEM needs much computation time and storage. The authors developed the finite element-transfer stiffness coefficient method (FE-TSCM) for overcoming the drawback of the FEM. In this paper, the authors apply the FE-TSCM to the in-plane vibration analysis of general plates with various shapes. Two numerical examples, a rectangular plate and a triangular plate, are used to compare the results of the FE-TSCM and the FEM. Through the numerical calculation, we confirm that the FE-TSCM can be applied to the in-plane free or forced vibration analysis of the general plates with various shapes and is effective to in-plane vibration analysis of general plates.

  • PDF

Thermal Buckling and Vibration Analysis of Composite Laminated Plates Using Shape Memory Alloy Fibers (형상기억합금 선을 삽입한 복합재료 적층판의 열적 좌굴 및 진동 해석)

  • 박재상;김지환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.916-921
    • /
    • 2001
  • 형상기억합금 선(Shape Memory Alloy Fibers : SMA Fibers)을 삽입한 복합재료 평판의 고온 환경에서의 열적 좌굴 및 진동 해석을 유한요소법을 이용하여 수행하였다 1 차 전단변형이론을 적용하여 적층판을 모델링하였고, 온도 변화 효과는 적층판의 전 영역에서 균일한 온도 분포로 가정하였다. 형상기억합금 선의 온도에 대한 비선형 재료 성질을 고려하여 열적 좌굴 해석 수행 시 반복 계산법을 이용하였고, 자유 진동 해석에서는 시스템의 자유도를 줄이기 위하여 Guyan-Reduction(CR)을 사용하였다. 온도 변화와 형상기억합금 선의 체적비(volume fraction) 및 초기 변형률(initial strain) 변화에 따른 임계 온도와 고유 진동수의 특성을 해석하였다.

  • PDF

Experimental Analysis on Vibration of Composite Plate by Using FBG Sensor System (브래그 격자 센서 시스템을 이용한 복합재 평판 진동의 실험적 해석)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.436-441
    • /
    • 2009
  • A fiber optic sensor is prospective to be applied to structural health monitoring. Especially, a fiber Bragg grating(FBG) sensor is one of the most popular sensors for the structural health monitoring. The FBG sensor has several demodulation systems for tracking the shift of the Bragg wavelength. The dynamic bandwidth is dependent on the demodulation system. In this paper, the sensing mechanism is that the slope of the optical spectrum of FBG could be used as its sensitivity when the tunable laser shot the monochromatic laser wavelength at the highest slope point. In this technique, the high sensitivity is guaranteed even though the sensing range is limited. In an example of the application, the composite plate embedding a FBG sensor was manufactured by using an autoclave method and the above sensing mechanism was applied to the composite plate. Firstly, the natural frequencies of the plate were successfully measured by the FBG sensor during the impact hammer test. Secondly, a high-power speaker was used to force the plate to be vibrated at the specific frequency that was one of the natural frequencies. During the shaking, the FBG sensor measures the dynamic characteristics and ESPI was also used to measure the mode shape. From the two dynamic tests, the availability of the FBG sensor system and the ESPI was proven as a technique for measuring the dynamic characteristics of composite structure.