• Title/Summary/Keyword: 평판유동

Search Result 311, Processing Time 0.024 seconds

A Study on the Characteristics of the Pulse Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파의 특성에 관한 연구)

  • Kim, H.D.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.562-567
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was vaned in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model (Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사)

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

A Reynolds Stress Model for Low-Reynolds-Number Turbulence (저레이놀즈수 난류에 대한 레이놀즈 응력모델)

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1541-1546
    • /
    • 1993
  • To extend the widely used Gibson and Launder's second order closure model to the low-Reynolds-number region near a wall, modifications have been made for velocity pressure-gradient interaction and dissipation terms in the stress equations, and also for the dissipation rate equation. From the computation of fully developed plane channel flow, it is found that the results with present model agree well with the data of direct numerical simulation in the predictions of stress components. And, the computed mean velocity profile coincides with the universal velocity law.

The Flow Visualization of ER Fluid Between Two Parallel-Plate Electrodes Separated by Small Distance (좁은 평행평판전극 사이의 ER유체 유동의 가시화)

  • Park, Myeong-Kwan;Rhee, Eun-Jun;Oshima, Shuzo;Yamane, Ryuichiro
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.801-810
    • /
    • 1999
  • The purpose of present research was to get characteristics and basic knowledges of electrorheological(ER) suspension. To observe behaviors of the ER suspensions. transparent conductive plates were used to visualize the flow of ER suspensions between two parallel plate electrodes. The influence of flowing speed and intensity of electric field on the ER fluid were examined in circle-shaped electric field, and it takes several hundred milliseconds that suspensions in flow cluster. The present study also conducts a numerical analysis adopting the Bingham model. It is found that simple Bingham model can not property describe the flow behavior in the parallel plates.

Heat Transfer and Flow visualization of Supersonic impinging jet (초음속 충돌제트의 유동 가시화 및 열전달 특성)

  • 조용일;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.31-31
    • /
    • 2000
  • 초음속 충돌제트(impinging jet)의 열 및 운동량 전달(heat and momentum transfer)은 로켓의 이ㆍ착륙, 다단 로켓의 분리, 로켓의 방향조절을 위해 배기 노즐에 부착되는 제트 베인(jet vane)이나 스포일러 탭(spoiler tab), 수직/단거리 이착륙기의 발진, 미사일 발사시스템, 전투기 동체, 날개, 후미 부분에서 발사되는 미사일의 배기가스가 주변장치 등에 충돌할 때 발생되는 문제점 등을 사전 예측하여 관련장비의 설계 둥에 유용한 자료로 이용된다. 따라서 이에 대한 기초 연구로서 초음속 유동 실험장치를 이용하여 마하수(Mach Number) 1.0 및 1.8인 경우에 대하여 수직/경사평판에서 팽창 비, 거리, 경사각에 따른 충돌 면에서의 단열 벽면온도를 측정하였다. (중략)

  • PDF

An experimental Study of Heat Transfer of Rivulet Flow over an Inclined, Heated Surface (경사진 가열 평판을 흐르는 리뷸릿 유동의 열전달 특성에 관한 실험적 연구)

  • Kang, Chi-Suk;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.156-161
    • /
    • 2006
  • The rivulet is a narrow stream of liquid flowing down a solid surface. Heat transfer of rivulet flow over on inclined heated surface has been investigated experimentally. This problem is of particular interest in the understanding of fundamental mechanism on rivulet heat transfer as well as in the design of a regenerative evaporative cooler. The rivulet is seem to be meandering flow, single wide flat flow. and film flow as rivulet flow rate is increased. Even though the wetted surface area is increased with an increase in the rivulet flow rate, the absorbed heat transfer of rivulet flow from a heated surface strongly depends on the flow pattern of rivulet.

  • PDF

Behaviors of Frost Formation on a Plate Fin Considering Fin Heat Conduction (휜의 열전도를 고려한 평판 휜에서의 착상 거동)

  • Kim, Jeong-Su
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.38 no.12
    • /
    • pp.51-60
    • /
    • 2009
  • 본 연구에서는 착상 조건 하에서 열교환기 휜의 열전도를 고려하여 휜 표면에서의 착상 거동을 예측하기 위하여 수학적 모델을 제시한다. 이 때, 공기측은 착상 현상에 대한 3차원 유동 변화의 영향을 고려한다. 서리층 두께에 대한 해석 결과는 실험 결과를 최대 10% 오차 내에서 잘 예측한다. 유동에 수직한 방향(z-dir.)의 서리층 두께 성장은 휜의 열전도에 의해 휜 바탕 근처에서 활발하고, 휜 끝으로 갈수록 지수함수적으로 둔화된다. 휜의 열전도를 고려한 경우에 비해 휜의 표면온도가 일정한 조건에서 서리층 두께는 최대 2배, 열전달량은 평군 10% 정도 과대 예측한다. 따라서, 열교환기 휜에서의 착상 거동을 정확하게 예측하기 위해 착상 모델 해석 시 휜의 열전도를 고려해야 한다. 휜의 열전도 고려 유무에 따른 착상 거동의 차이를 보완하기 위해 열전달량에 대한 등가온도를 산출하며, 이를 근거로 무차원 등가 온도 상관식을 도출한다.

  • PDF

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

A Study on Viscous Flow around a Pipeline between Parallel Walls by the Numerical Simulation (수치 시뮬레이션을 통한 평판내 파이프라인 주위의 점성유동 연구)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.473-478
    • /
    • 2003
  • Numerical study was made on the flow characteristics around a circular pipeline between parallel walls. The incompressible Navier-Stokes equations were solved by using a third-order upwind differential scheme. When the distance near a wall is small enough, the vortex shedding is almost completely suppressed because of the interaction with the wall boundary layer separation. This study aims to clarify the characteristics of the vortex shedding regime as the body approaches a wall as Reynolds number varies. The feature of separated vorticity dynamics is analyzed at different conditions with particular attention to the interaction between the pipeline wake and the induced separation on the plane walls.

Numerical Simulation of Supersonic Inlet Flow (초음속 흡입구 유동의 수치모사)

  • Kwak, Ein-Keun;Yoo, Il-Yong;Lee, Seung-Soo;Jung, Suk-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.133-137
    • /
    • 2009
  • Numerical simulations of flows in an axisymmetric supersonic inlet with bleed regions were performed. For the simulations, the existing code which solves the RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was transformed to axisymmetric form and bleed boundary condition was applied to the code. In this paper, the modified code was validated by comparing the results against an experimental data and other computational results for flow on a bump and over an oblique shock with bleed region. Using the code, numerical simulations were performed for the flow in the inlet with multiple bleed regions.

  • PDF