DOI QR코드

DOI QR Code

고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell

  • 전동협 (동국대학교 기계시스템공학과) ;
  • 신동열 (엘티씨 기술개발연구소) ;
  • 유광현 (엘티씨 기술개발연구소) ;
  • 송락현 (에너지기술연구원 연료전지연구센타)
  • 투고 : 2017.04.21
  • 심사 : 2017.08.10
  • 발행 : 2017.10.01

초록

공개소스 전산유체 해석 라이브러리인 OpenFOAM을 이용하여 음극 지지체형 고체산화물 연료전지의 온도균일성에 관한 연구를 수행하였다. 3가지 유형의 유동흐름(병행류, 대향류, 직교류)에 대하여 수치해석이 이루어졌다. 다공성 물질내에서의 기체의 흐름은 유효확산계수를 이용하여 계산하였고 분리판의 리브 영향도 고려하였다. 전기화학반응의 계산을 위하여 실험식으로부터 얻은 집중내부저항 모델이 사용되었다. 수치해석 결과 대향류가 가장 균일한 온도분포를 나타내었다.

We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

키워드

참고문헌

  1. Steel, B.C.H. and Heinzel, A., 2001, "Materials for Fuel-cell Technologies," Nature, Vol. 414, pp. 345-352. https://doi.org/10.1038/35104620
  2. Yakabe, H., Ogiwara, T., Hishinuma, H. and Yasuda, I., 2001, "3-D Model Calculation for Planar SOFC," J. Power Sources, Vol. 102, pp. 144-154. https://doi.org/10.1016/S0378-7753(01)00792-3
  3. Jiang, T.L. and Chen, M-.H., 2009, "Thermal-stress Analysis of an Operating Planar Solid Oxide Fuel Cell with the Bonded Compliant Seal Design," Int. J. Hydrogen Energ., Vol. 34, pp. 8223-8234. https://doi.org/10.1016/j.ijhydene.2009.07.089
  4. Huang, C.M., Shy, S.S. and Lee, C.H., 2008, "On Flow Uniformity in Various Interconnects and its Influence to Cell Performance of Planar SOFC," J. Power Sources, Vol. 183, pp. 205-213. https://doi.org/10.1016/j.jpowsour.2008.04.059
  5. Nakajo, A., Stiller. C., Harkegard, G. and Bolland, O., 2006, "Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC," J. Power Sources, Vol. 158, pp. 287-294. https://doi.org/10.1016/j.jpowsour.2005.09.004
  6. Cui, D. and Cheng, M., 2009, "Thermal Stress Modeling of Anode Supported Micro-tubular Solid Oxide Fuel Cell," J. Power Sources, Vol. 192, pp. 400-407. https://doi.org/10.1016/j.jpowsour.2009.03.046
  7. Selimovic, A., Kemm, M., Torisson, T. and Assadi, M., 2005, "Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells," J. Power Sources, Vol. 145, pp. 463-469. https://doi.org/10.1016/j.jpowsour.2004.11.073
  8. Lin, C-.K., Chen, T-.T., Chyou, Y-.P. and Chiang, L-.K., 2007, "Thermal Stress Analysis of a Planar SOFC Stack," J. Power Sources, Vol. 164, pp. 238-251. https://doi.org/10.1016/j.jpowsour.2006.10.089
  9. Yuan, P., 2008, "Effect of Inlet Flow Maldistribution in the Stacking Direction on the Performance of a Solid Oxide Fuel Cell Stack," J. Power Sources, Vol. 185, pp. 381-391. https://doi.org/10.1016/j.jpowsour.2008.06.039
  10. Achenbach, E., 1964, "Three-dimensional and Time-dependent Simulation of a Planar Solid Oxide Fuel Cell Stack," J. Power Sources, Vol. 49, pp. 333-348.
  11. Recknagle, K.P., Williford, R.E., Chick, L.A., Rector, D.R. and Khaleel, M.A., 2003, "Threedimensional Thermo-fluid Electrochemical Modeling of Planar SOFC Stacks," J. Power Sources, Vol. 113, pp. 109-114. https://doi.org/10.1016/S0378-7753(02)00487-1
  12. Xia, W., Yang, Y. and Quisheng, W., 2009, "Effect of Operations and Structural Parameters on the Onecell Stack Performance of Planar Solid Oxide Fuel Cell," J. Power Sources, Vol. 194, pp. 886-898. https://doi.org/10.1016/j.jpowsour.2009.06.009
  13. Beale, S.B., Choi, H-.W., Pharoah, J.G., Roth, H.K., Jasak, H. and Jeon, D.H., 2015, "Open-source Computational Model of a Solid Oxide Fuel Cell," Comp. Phy. Comm., In press, doi:10.1016/j.cpc.2015. 10.007.
  14. Jeon, D.H., Shin, D-.R., Ryu, K-.H. and Song, R-.H., 2017, "Effect of Gas Channel/Rib Width in Solid Oxide Fuel Cells," Trans. Korean Soc. Mech. Eng. B, Vol. 41, pp. 109-115.
  15. Todd, B. and Young, J.B., 2002, "Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modeling," J. Power Sources, Vol.110, pp. 186-200. https://doi.org/10.1016/S0378-7753(02)00277-X
  16. Hernadez-Pacheco, E. and Mann, M.D., 2004, "The Rational Approximation Method in the Prediction of Thermodynamic Properties for SOFCs," J. Power Sources, Vol. 128, pp. 25-33. https://doi.org/10.1016/j.jpowsour.2003.09.056
  17. Dong, W., Beale, S.B. and Boersma, R.J., 2001, "Computational Modeling of Solid Oxide Fuel Cells," Proc. Conf. CFD Soc. Canada, waterloo, ON. pp. 382-387.
  18. Le, A.E., Beale, S.B. and Pharoah, J.G., 2015, "Validation of a Solid Oxide Fuel Cell Model on the International Energy Agency Benchmark Case with Hydrogen Fuel," Fuel Cells, Vol. 15, pp. 27-41. https://doi.org/10.1002/fuce.201300269