• Title/Summary/Keyword: 평직

Search Result 143, Processing Time 0.026 seconds

Effects on the nylon6 elastic fabric according to weaving, dyeing and finishing condition (제직 및 염색가공 조건이 나일론6 신축직물에 미치는 영향)

  • Son, Hyun-Sik;Sim, Seong-Bum;Choi, Kwang-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.112-112
    • /
    • 2012
  • 스포츠웨어 중 바람막이제품의 용도에 사용되는 소재는 폴리에스터와 폴리아미드 소재가 주류이며, 그 중에서 고품격의 바람막이 제품에 대해서는 주로 나일론6 소재를 사용하고 있다. 최근 소비자들은 삶의 질 향상과 야외활동의 증가로 인해 제품의 경량화, 안락한 착용감, 고기능성 등을 동시에 겸비한 제품을 요구하고 있다. 이러한 수요에 발맞추어 국내에서 많이 생산되고 있는 나일론6 소재를 이용하여 제품화 간계에서 경량감과 신축성이 발현될 수 있는 나일론6 소재의 경량 신축직물에 대한 연구개발이 요구되고 있다. 본 연구에서는 직물 단계에서의 경량감과 신축성이 발현될 수 있는 나일론6 소재 신축직물을 개발하기 위해 공중합 나일론6 폴리머와 일반 나일론6 폴리머를 복합방사 설비를 이용하여 side by side POY 26d/6f의 원사를 제조한 후 가연공정을 거쳐 개발된 DTY 20/6f 가연사를 직물 설계 시 위사방향으로 적용하여 제직을 실시하였다. 직물 설계 조건은 기존 T사에서 생산중인 나일론 DTY 20d/7f을 경사로, 개발 소재인 DTY 20/6f을 위사에 적용하였으며, 제직 시 경사밀도 2가지, 위사밀도 2가지로 설계하였으며, 조직의 변화에 따른 신축특성의 변화를 확인하기 위해 평직, Rib. 도비직으로 제직하였고, 이렇게 제조된 직물에 대해 전처리, 염색, 후가공, 코팅가공 공정 조건별로 테스트를 진행한 후, 신축성발현을 위한 최적 공정조건 확보를 위한 공정별 직물의 신축성 변화분석과 최적 공정을 통해 개발한 최종 직물에 대한 신축성 평가를 실시하였다. 테스트 결과, 제직 조건별로는 경사밀도와 위사밀도가 낮은 경우가 원단 내 수축이 더욱 많이 발생함으로써, 신축성이 향상됨을 알 수 있었으며, 조직별로는 평직, Rib. 도비직 순서로 신축성이 우수함을 알 수 있었다. 또한 공정별 신축성 변화분석 결과, 염색 시 가장 신축성 발현이 두드러지게 높은 것으로 나타났으며, 전처리는 일반 연속식 전처리 보다 CPB 전처리 공정이 이후 염색가공 및 코팅을 통해 제조된 직물의 신축성 향상 및 표면 평활성에 높은 기여를 하는 것을 알 수 있었다. 상기 조건에 서 얻어진 최적 공정 조건으로 제조된 최종 코팅직물의 경우에 22% 정도의 신축성이 나타나 개발 소재의 신축특성이 우수함을 확인하였다.

  • PDF

Fabrication and Design of Multi-Layered Radar Absorbing Structures of MWNT-Filled Glass/Epoxy Plain-Weave Composites (MWNT가 첨가된 유리/에폭시 평직 복합재료로 이루어진 다층형 전자파 흡수 구조체의 제작 및 설계)

  • Lee, Sang-Eui;Kang, Ji-Ho;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.24-32
    • /
    • 2005
  • The object of this study is to design radar absorbing structures(RAS) with load-bearing ability in X-band. Glass/Epoxy plain-weave composites of excellent specific stiffness and strength, containing multi-walled carbon nanotubes(MWNT) added to induce dielectric loss were fabricated. The observation of microstructure and the permittivity of the composites confirmed that the materials are suitable to be used for radar absorbing material. Genetic algorithm and theory for reflection/transmission of electromagnetic waves in a multi-layered RAS were applied to conduct an optimal design of a RAS composed of the developed composites. We observed that the thickness per ply changes with the number of ply and MWNT contents. The fabrication process was proposed considering the problem and applied to fabricate a designed RAS and the theoretical and measured reflection loss of the RAS were also found in good agreement.

The study on the yarn & weaving characteristics of Korean traditional plain weave - Focused from the Sang-go(上古) period to the Joseon Dynasty(朝鮮王朝) - (한국 전통 평직물의 실과 조직의 특징에 관한 연구 - 상고시대부터 조선시대까지를 중심으로 -)

  • Choi, Seungyeun
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • This study analyzed the characteristics of Korean traditional plain weave excavated from Sang-go period to Joseon Dynasty. To do this, this study classified the Korean traditional plain weave into fiber types(cotton, hemp & ramie, plain weaved silk), analyzed and compared the thickness, twist type of yarns and density by times. First, in characteristics of cotton, the average and maximum density of Joseon Dynasty were higher than those of Goryeo, twist type was mainly s-twist and the density of warp was higher than that of weft. Second, the maximum density of hemp & ramie was found in era of Three Kingdoms of Korea. In common characteristics of hemp & ramie, twist type was mainly s-twist(sometimes non-twist) to the Three Kingdoms of Korea and was changed into non-twist from the Goryeo. The density of warp was higher than that of weft in common. Generally, the average density of ramie was higher than that of hemp. Third, in the characteristics of plain weaved silk, twist type was mainly non-twist(sometimes s and z-twist) from Sang-go period to Joseon Dynasty. Warp-faced ribbed tabby was excavated in Goryeo, the average density of warp-faced ribbed tabby was higher than that of other fiber types plain weave. Generally, in all fiber types, the density of warp was higher than that of weft.

A Study on the Micro-deformation of Plain Weave Carbon/Epoxy Composite-Polymer Foam Sandwich Structures during Curing (평직 탄소섬유 복합재료-고분자 포움 샌드위치 구조의 성형 중 미소변형에 관한 연구)

  • Kim Yong-Soo;Chang Seung-Hwan
    • Composites Research
    • /
    • v.17 no.6
    • /
    • pp.28-36
    • /
    • 2004
  • Micro-tow deformation during forming of PVC foam-fabric composite sandwich structure is investigated to find out the correlation between forming condition and material deformation. The foams used in this research are PVC foams which have 4 different densities and the fabric composite is Carbon/epoxy prepreg which is plain weave (3k) as a skin material. Tow parameters such as crimp angle and tow amplitude are measured using microscope and a proper image tool and are compared with each other. In order to find out the effect of foam deformation during forming on tow deformation the compressive tests of foams are performed in three different environmental temperatures ($25^{\circ}C$, $80{\circ}C$, $125^{\circ}C$). The microscopic observation results show that the micro tow deformations are quite different from each other with respect to the foam density and forming pressure.

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests (편향 인장 및 트렐리스 시험에 의한 직물 복합재료의 면내 전단 물성 평가)

  • Lee, Won-Oh;Um, Moon-Kwang;Byun, Joon-Hyung;Cao, Jian
    • Composites Research
    • /
    • v.23 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • Three types of glass woven fabrics (plain, balanced twill, and unbalanced twill) having various sample sizes and aspect ratios were tested using the bias-extension tests. Real-time deformation images, force, and displacement data were collected. For the bias-extension test, the shear angle of the fabrics from the equation based on the crosshead displacement and fabric size was compared with direct manual measurements of the warp and weft angles as well as the optical measurement software. To determine the shear force, an analytical equation was introduced considering the kinematics of the bias-extension test. The obtained shear behaviors were further compared with the results by the trellis-frame test. The optical measurement methods showed that the mathematical method was reasonable before the shear angle of the fabrics reaches $30^{\circ}$ in the bias-extension tests. Also, the bias-extension test gave consistent behaviors with the trellis-frame test only for isotropic and homogeneous fabrics such as balanced plain and twill weaves.

Study of Failure Criterion of Hole-Notched Plain-Weave Carbon Fiber Reinforced Plastic (CFRP) Composites (홀 노치를 포함한 평직 탄소섬유강화플라스틱의 파괴기준 연구)

  • Kim, Sang-Young;Geum, Jin-Hwa;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.481-486
    • /
    • 2010
  • Recently, carbon fiber reinforced plastic (CFRP) have been used in various fields because of its high specific modulus, and chemical properties. Most products in which CFRP composites are used are manufactured by joining the product components by bolts or pins. Holes for bolts and pins decrease the strength of the components because these holes act as notches in the structures. In this study, the fracture strength of CFRP plain-weave composite plates containing holes is experimentally investigated to examine the effects of hole-size and specimen width on notched tensile strength. The results show that the characteristic length considered in the point stress criterion depends on the hole size and specimen width. There exists a certain relation between notched tensile strength and characteristic length. Fracture criterion is redefined on basis of this relation.

Strength of Unidirectional and Fabric Hybrid Laminate Joints (일방향-평직 복합재 혼합 적층판의 체결부 강도 연구)

  • An,Hyeon-Su;Sin,So-Yeong;Gwon,Jin-Hui;Choe,Jin-Ho;Lee,Sang-Gwan;Yang,Seung-Un
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • The failure load and mode of the unidirectional and fabric hybrid composite laminate joints are studied by test and finite element analysis. Test is conducted for the specimens with nine various geometries under pin loading. Finite element analysis is performed considering the contact and friction effects between the pin and laminate by MSC/NASTRAN. Failure is estimated by Tsai-Wu and Yamada-Sun criteria on the characteristic curve. While the failure of the specimens with the small width and edge length are much affected by the joint geometry, the geometry effects are negligible in the specimens with large width and edge length. Finite element analysis based on the characteristic length method reasonably predicts the failure load and mode of the joints.

Analysis of Wooden Materials and Fabrics from the Tomb of Yi Jing (이징(1580년~1642년) 묘 출토 목질류 및 직물류 분석)

  • Lee, Hyosun;Park, Woonji
    • Conservation Science in Museum
    • /
    • v.18
    • /
    • pp.19-34
    • /
    • 2017
  • Analysis of the species of wood in the wooden materials and the chemical composition of the fabric of the clothing excavated from the tomb of Yi Jing (1580-1642) has determined that the wooden materials, including the coffin (內棺, naegwan), burial chamber(外棺, oegwan), chilseongpan(七星板, bottom-lining board), and fan-shaped slats were made of pine(Pinus densiflora). The analysis of the fabrics suggested that the cloth attached to the fan-shaped slats, the funeral banner with inscriptions, and the five pouches for the corpse (五囊, onang) were all made of silk. The jacket was made of plain-weave cotton, while the inner and outer cloth of the socks were made of cotton and hemp, respectively. Among the silk items, the pouches for the left and right feet (constituting the five pouches for the corpse) were made from a satin-weave figured silk, while the other silk items were made of ju(紬), or plain-weave silk fabric. Infrared analysis revealed that the fan-shaped slats were decorated with cloud patterns across the entire surface, while the funeral banner and the five pouches for the corpse bore ink inscriptions.