• Title/Summary/Keyword: 평면 응력

Search Result 298, Processing Time 0.022 seconds

Numerical Analysis Method of Overlay Model for Material Nonlinearity Considering Strain Hardening (변형률 경화를 고려한 오버레이 모델의 재료비선형 수치해석기법)

  • Baek, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.291-301
    • /
    • 2007
  • The overlay model is a certain kinds of numerical analysis method to present the material non-lineariy which is represented the baushinger effect and the strain hardening. This model simulates the complex behavior of material by controlling the properties of the layers which like the hardening ratio, the section area and the yield stress. In this paper, the constitutive equation and plastic flow rule of each layer which are laid in the plane stress field are obtained by using the thermodynamics. Two numerical examples were tested for the validity of proposed method in uniaxial stress and plane stress field with comparable experimental results. The only parameter for the test is the yield stress distribution of each layers.

Investigation of Plane Strain Fatigue Crack Growth Behavior by Using Side-Grooved Specimens (측면홈 시험편을 이용한 평면 변형률 피로 균열 진전에 관한 연구)

  • 김종한;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • Plane-strain fatigue crack growth behavior of 7075-76 aluminium alloy was investigated by using side-grooved through-thickness center cracked tension(CCT) specimens. The effect of side-groove on the stress intensity factor value was examined. The effective thickness expression of $B_{e}$= $B_{o}$-( $B_{o}$-( $B_{ o-B_{n}^{2}}$ $B_{o}$ is the most appropriate to evaluate the stress intensity factor of side-grooved CCT specimen for fatigue testing. Fatigue crack growth rates can be well described by the effective stress intensity factor range based on closure measurements, for both side-grooved and uniform thickness specimens. Provided that the thickness of specimen meets the requirements for valid plane-strain fracture toughness, uniform thickness specimen data may be assumed to approximately represent the plane strain through-thickness crack growth behavior.ehavior.r.

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

A Newly-developed Plane Strain Testing Device and Its Applicability (새로운 평면변형률 시험장비의 개발과 적용성 검증)

  • Kim Chang-Youb;Lee Young-Sun;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • A simple and useful plane strain testing device was newly developed and its mechanical features were presented in this paper. The new testing device was designed to be capable of testing various stress paths expected under plane strain condition with only the conventional triaxial loading system. The applicability of the new testing device was systematically checked both by theoretical evaluation and by experiments. As a result, it was found that the new testing device has much wider range of application than the conventional plane strain testing devices.

A Closed Form Nonlinear Solution for Large Pure Bending Deformation of Solid Plate (고체 평판의 비선형 순수굽힘변형에 대한 수학적 정해)

  • Youngjoo Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.220-225
    • /
    • 1998
  • 압축성 초탄성 평판의 순수굽힘에 대한 비선형 변형해석의 수학적 정해가 본 논문에 구해져 있다. 이차원 평면 변형도 상태가 해석을 위하여 가정되었으며, 비선형 순수굽힘 변형해석결과는 고전적인 선형 순수굽힘 변형해석결과와 비교되었다. 고전적인 선형굽힘 결과와는 다르게 비선형 순수굽힘 상태에서는 반경방향응력은 영이 아니며 또한 각방향응력도 선형 상태가 아닌 것으로 규명되었다.

  • PDF

3D Semi-elliptical Interfacial Crack Front Stress Fields in Welded Joints (용접부 3차원 반타원 계면균열선단에서의 응력장)

  • 최호승;이형일;송원근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.649-659
    • /
    • 2002
  • For a variety of elastic-plastic stress fields of plane strain specimens, many research works verified the validity of J-T approach. To generalize the validity of J-T method, however, further investigations are needed for more practical 3D structures than the idealized geometries as plane strain specimens. In this work, selecting two main types of structures such as plate and straight pipe, we perform 3D finite element(FE) modeling, and accompanying elastic, elastic-plastic FE analyses. We then study the validity of J-T application to 3D structures, and present some useful informations for the design or assessment of pipe welds by comparing the stress fields from the detailed 3D FE analyses to those predicted with J-T two parameters.

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.25-36
    • /
    • 2008
  • The plane strain test can reproduce the real field condition and failure behavior precisely over other laboratory shear tests. Accordingly, this test has been utilized to investigate the shearing behaviors associated with overall failure behavior and local deformation of soils. However, most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment and also performing it. This restraint induces different results with real field because of shear stress on end plates. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. And the formation and development of shear band caused by the restrained effect of end plate and the deformation mechanism of sand under plane strain condition were examined.

Consolidated Undrained Triaxial on Cubical Compression and Plane Clay Specimen (입방체 점토시료에 대한 압밀 비배수 삼축압축 및 평면변헝률 시험)

  • 박경기;이강일
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-54
    • /
    • 1994
  • This study aims at investigating the mechanism and operation of cubical triaxial test developed by Lade in order to obtain analysis on the clayey foundation deformation. A comparison on deviator stress, pore water pressure and stress path is made between test results of clay using the cubical consolidated undrained test as well as plane strain test.

  • PDF

A Study on the Stress Concentration and Diminishing in Structural Member with Arbitrary Section Using Finite Element Method (유한요소법을 이용한 집중하중을 받는 임의단면형상부재에서 응력집중현상과 소멸현상에 관한 연구)

  • 최종근;이종재;김동현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1069-1078
    • /
    • 1990
  • It is shown that the performance of finite element based on energy orthogonal functions may be superior to conventional formulation for plane stress problem. Using this finite element, it is then attempted to show the distribution of stress concentration effect for subsurface under loading point. It turned out that the stress concentration effect for subsurface is not dependent on the width of the member but the loading area. And then it is shown that the solution attained by taking the stress function as a Fourier series is not satisfactory in y<0.1B.