• Title/Summary/Keyword: 평면캠기구

Search Result 5, Processing Time 0.021 seconds

Development of Modulated Planar Cam-Linkage Mechanism Design Software (평면 캠-링크 복합 기구용 설계 소프트웨어 개발)

  • Yang, Hyun-Ik;Yu, Ho-Yune
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.125-131
    • /
    • 1999
  • For linkage mechanisms driven by a cam, cam profile is the major design factor and is determined by the cam follower motion. If a cam mechanism has additional kinematic linkage besides cam and follower then the follower motion should be specified from the motion of end linkage member so that cam would be able to generate the desired end linkage motion. In this paper, a cam-linkage mechanism is constructed with the combinations of modular linkage elements including cam and follower and as a result, a planar cam-linkage mechanism design software with the cam profile optimization function is developed and presented.

  • PDF

A Study on Precision Machining Technology for Disk Cams using Bi-arc Method (Bi-arc법을 이용한 평면 캠의 정밀 가공 기술에 관한 연구)

  • Shin J.H.;Kwon S.M.;Cho I.Y.;Kim J.C.;Kang H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.235-236
    • /
    • 2006
  • The disk cam mechanism can produce a positive motion with relatively few components. This paper introduce a shape design of cam using the relative velocity method and a precision machining technology for using Bi-arc method. The paper gives a machining information at each point using the Bi-arc method and the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism.

  • PDF

A Study on Machining Information Analysis of Disk Cam using Circular Interpolation (원호보간법을 이용한 평면 캠 가공 정보 분석에 관한 연구)

  • Cho, I.Y.;Kim B.J.;Kim J.C.;Shin J.H.;Kwon S.M.;Woo J.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1678-1681
    • /
    • 2005
  • The disk cam mechanism cam produce a positive motion with a relatively few components. In the present paper a shape design of cam using the relative velocity method and the machining information analysis using the circular interpolation are introduced. In the first part of the paper a machining information at each point using the circular interpolation is taken. This study purposes the analysis method of the cutting error due to the moving path of the cutter, so that we can lead to the optimum design in a disk cam mechanism..

  • PDF

평면 캠-링크 기구의 설계 소프트웨어 개발

  • 양현익;유호윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.788-793
    • /
    • 1995
  • For a linkage mechanism deiven by cam, cam profile is the major design factor and is determined by the motion type od cam follower. If a cam mechanism has additional kinematic linkages besides cam and follower then the follower motion should be specified form the motion of end linkage member so that cam would be able to generate the desired end linkage motion. In this paper, a cam-linkage mechanism is constructed with the combinations of modular linkage elements including cam and follower and as a resullt, a planar cam-linkage mechanism design software with the cam profile optimization function is developed and presented.

  • PDF

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.