• Title/Summary/Keyword: 평면변형률

Search Result 143, Processing Time 0.024 seconds

Tapered Joint Design for Power Transmission of MW-grade Wind Turbine (MW급 풍력발전기 동력전달용 테이퍼 연결장치 설계에 관한 연구)

  • Kang, JongHun;Bae, JunWoo;On, Hanyong;Kwon, Yongchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1183-1189
    • /
    • 2015
  • This study focuses on the design of the tapered joints of a wind power turbine. The main variables of the tapered joint are the transmitted torque, shaft diameter, contact area of the tapered ring, and tightening torque of the bolts, which applies a compressive pressure from the hub to the shaft. The stress distribution of the taper fit was calculated under axisymmetric plane strain conditions because of the small taper angle. The axial displacement of the clamp can be calculated from the radial elastic deformation and the taper angle. The stress field of each ring is obtained from the cylinder stress equation. To verify the accuracy of the calculation, finite element (FE) analysis was performed, and the results of the calculation and FE analysis were compared. The hoop stress of the tapered surface showed a discrepancy of approximately 10, but the trends of the stress distributions of each component and the relative movement obtained by FE analysis were in good agreement with the analytical calculation results.

A Study of a Variety of Sands in Stress-dilatancy Relationships (각 종 모래의 Stress-dilatancy 관계에 관한 연구)

  • 박춘식;장정욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2002
  • Anisotropy of stiffness, from extremely small strains to post-failure strains, of isotropically consolidated air-pluviated sands in plane strain compression was studied by using the newly developed instrumentation fur small strain measurements, Seven types of sand of world-wide origins were tested, which have been extensively used for research purposes. Stress-strain relationships for a wide range of strain from about 0.0001% to the peak were obtained by measuring axial and lateral strains locally free from the effects of bedding and membrane penetration errors at the specimen boundaries. The result showed that the relationship between the principal stress ratio and the principal strain increment ratio was constant, being rarely affected by the over-consolidation ratio and the confining pressure. Although in the small strain the anisotropy hardly affected the relationship between the principal stress ratio and the principal strain increment ratio, the K value around the peak varied according to the $\delta$ value. In general, Rowe\`s stress-dilatancy equation works fairly well from the small strain to the peak.

Development of Three-Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part II Formulation of Fracture Strain Surface (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제2부 파단 변형률 평면의 정식화)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.454-462
    • /
    • 2015
  • An extended study was conducted on the fracture criterion by Choung et al. (2011; 2012) and Choung and Nam (2013), and the results are presented in two parts. The theoretical background of the fracture and the results of new experimental studies were reported in Part I, and three-dimensional fracture surface formulations and verifications are reported in Part II. How the corrected true stress can be processed from the extrapolated true stress is first introduced. Numerical simulations using the corrected true stress were conducted for pure shear, shear-tension, and pure compression tests. The numerical results perfectly coincided with test results, except for the pure shear simulations, where volume locking appeared to prevent a load reduction. The average stress triaxialities, average normalized lode parameters, and equivalent plastic strain at fracture initiation were extracted from numerical simulations to formulate a new three-dimensional fracture strain surface. A series of extra tests with asymmetric notch specimens was performed to check the validity of the newly developed fracture strain surface. Then, a new user-subroutine was developed to calculate and transfer the two fracture parameters to commercial finite element code. Simulation results based on the user-subroutine were in good agreement with the test results.

Optimization of the tool geometry of PSST using taguchi's orthogonal matrix (다구치 직교배열을 이용한 평면변형률 장출실험용 금형의 최적설계)

  • Kim, Yeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2073-2080
    • /
    • 1997
  • Recently, the plane strain puch stretching test(called PSST) has been developed and used successfully in the evaluation of the press formability of automotive steel sheets. In this paper, the optimum punch geometry of the original PSST tool was investigated by the FEM analysis. The puch length, crown and corner radius are chosen to be optimized according to the Taguchi's experiment technique with the $L_4$ orthogonal array.

The Analysis of Tunnel Behavior using Different Constitutive Models (다양한 구성방정식에 따른 터널 거동해석)

  • Kim, Young-Min;Kang, Seong-Gwi
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.73-81
    • /
    • 2010
  • The paper presents the application of FE simulations of NATM tunnel using different constitutive models. The results from a series of two dimensional plane strain finite element analyses of medium-liner interaction for NATM are presented. Four types of constitutive models are considered, namely, linear elastic, elasto-plastic Mohr-Coulomb, Hardening-Soil, Soft-Soil model. The design for tunnels requires a proper estimate of surface settlement and lining forces. It is shown that the advanced constitutive model gives better predictions for both ground movement and structural forces.

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

A Study on the Crack Tip Plastic Region for Stable Crack Growth -304 Stainless Steel- (안정군열성장에 대한 군열선단 소성역에 관한 연구 -304 스테인리스 강-)

  • 황갑운
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1183-1192
    • /
    • 1989
  • 본 논문에서는 평면변형률 상태하에서 안정하게 성장하는 균열선단에 집중 되어있는 강소성역의 해석에 역점을 두어 재결정법과 탄.소성유한요소법을 도입하여 안정 성장균열 선단에 형성되는 균열 성장저항에 직접적인 영향을 미치고 있는 소성 역의 크기나 형태에 대한 실험 및 해석을 하였다.

Modeling and Analysis of Size-Dependent Structural Problems by Using Low-Order Finite Elements with Strain Gradient Plasticity (변형률 구배 소성 저차 유한요소에 의한 크기 의존 구조 문제의 모델링 및 해석)

  • Park, Moon-Shik;Suh, Yeong-Sung;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1041-1050
    • /
    • 2011
  • An elasto-plastic finite element method using the theory of strain gradient plasticity is proposed to evaluate the size dependency of structural plasticity that occurs when the configuration size decreases to micron scale. For this method, we suggest a low-order plane and three-dimensional displacement-based elements, eliminating the need for a high order, many degrees of freedom, a mixed element, or super elements, which have been considered necessary in previous researches. The proposed method can be performed in the framework of nonlinear incremental analysis in which plastic strains are calculated and averaged at nodes. These strains are then interpolated and differentiated for gradient calculation. We adopted a strain-gradient-hardening constitutive equation from the Taylor dislocation model, which requires the plastic strain gradient. The developed finite elements are tested numerically on the basis of typical size-effect problems such as micro-bending, micro-torsion, and micro-voids. With respect to the strain gradient plasticity, i.e., the size effects, the results obtained by using the proposed method, which are simple in their calculation, are in good agreement with the experimental results cited in previously published papers.

A Study on the Arching Effect due to Embankment Piles (성토지지말뚝에 의한 아칭효과 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.375-381
    • /
    • 2017
  • A full-scale field test was conducted to investigate the arching effect of an embankment pile. The arching effect calculated from the test results was compared with theoretical values. Measurements obtained from a load cell and an earth pressure cell during the field test reflected the arching effect of the embankment pile well. The arching effect measured by load cells for an embankment height of 3m or less was smaller than the theoretical value with the assumption of plain strain.The measured effect for a height of 4 m or more was larger than the theoretical value. In contrast to the consistent decrease of the theoretical arching effect, the arching effect obtained from the field test shows continually increasing trends. The arching effects calculated from the earth pressure cells were greater than those from the theory under the plain strain assumption, but the trend was similar to the theoretical one. The arching effects measured by the earth pressure cells an embankment heights of 2, 3, 4, 5, and 6 m were 1.05, 1.23, 1.29, 1.28, and 1.29 times greater than those from the theory under the assumption of plain strain. The arching effects from the field test were much greater than those from the theory under the installation of a pile grid.

Confining Pressure-Dependency on Deformation and Strength Properties of Sands in Plane Strain Compression (평면 변형률 상태에서의 모래의 변형 강도특성의 구속압 의존성)

  • Park, Choon Sik;Tatsuoka, Fumio;Jang, Jeong Wook;Chung, Sung Gyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.543-552
    • /
    • 1994
  • A series of drained plane strain compression tests was performed on dried samples of dense Toyoura sand and Silver Leighton Buzzard sand prepared by air-pluviation method to find out the deformation and strength characteristics on the value of confining pressure ${\sigma}{_3}^{\prime}({\sigma}{_3}^{\prime}=0.05{\sim}4.0kgf/cm^2)$. The axial and lateral strains measured in this apparatus ranged from $10^{-6}$ up to the failure of the specimen. So the stress-strain characteristics would be investigated from very small to very large strain levels. It was found that the change of the angle of internal friction ${\phi}^{\prime}{_{max}}=arcsin\{({\sigma}{_1}^{\prime}-{\sigma}{_3}^{\prime})/({\sigma}{_1}^{\prime}+{\sigma}{_3}^{\prime})\}_{max}$ with the change of ${\sigma}{_3}^{\prime}$ is very small when ${\sigma}{_3}^{\prime}$ is lower than higher. Furthermore, the effect of confining pressure on stiffness of sands was evaluated. It was also found that for the range of shear strain ${\gamma}$ from $10^{-6}$ to those at peak, the Rowe's stress-dilatancy relation seems to be a good approximation for air-dried Toyoura sand and Silver Leighton Buzzard sand, irrespective of the change of ${\sigma}{_3}^{\prime}$.

  • PDF