• Title/Summary/Keyword: 평균방사온도

Search Result 56, Processing Time 0.024 seconds

Development of Automatic System to Measure Transmitted Ultrasonic Speed of Raw Ginseng (수삼의 초음파 전달속도 계측 자동화 시스템 개발)

  • 서동현;김기대;강호양;김찬수;이현동
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.592-599
    • /
    • 2002
  • 본 연구에서는 수삼의 가공전 선별을 위해 현장에서 편리하게 사용할 수 있는 초음파 전달 속도 계측 자동화 시스템을 개발하여 그 성능을 평가하고자 하였으며 결과를 요약하면 다음과 같다. 1. 개발된 시스템은 제어용 컴퓨터, 시스템 구동 및 탐촉자 이동 장치, 하중 변환장치, 초음파 발생 및 송수신 장치 등으로 구성되었다. 2. 제어 및 계측용 프로그램은 압축력, 측정 대상물의 크기, 초음파 전달 시간을 순차적으로 계측하여 초음파 전달 속도를 계산하는 알고리즘을 개발하였으며, Visual Basic 6.0으로 작성되었다. 모터의 작동, A/D 변환, RS232C 통신 등과 관련된 부분은 각각의 모듈화된 함수로서 구동하고자 하였다. 3. 개발된 시스템의 속도와 거리별 이동 거리별 오차를 측정한 결과 0∼0.04mm 범위를 나타내었다. 이 값은 시스템의 허용오차인 0.17mm 오차보다는 현저히 작은 값이었고 15mm/s와 30mm/s의 이동 속도에서 모두 비슷한 크기의 오차값을 나타내었다. 4. 개발된 시스템의 속도별 반복정밀도 실험 결과 측정위치에서의 반복에 의한 정지 위치 오차는 전 구간에서 0.02mm 이내로 나타났고, 이동 평판의 이동속도가 15mm/s였을 경우에는 이동 회수 30회, 이동 거리 60mm일 때 최대 편차 0.019mm를 나타냈으며 이동속도가 30mm/s일 경우에는 이동 회수 40회, 이동거리 20mm에서 0.02mm의 최대 편차를 나타내었다. 5. 5개의 알루미늄 조각의 크기를 시스템으로 측정한 결과 측정값의 최대 편차는 0.08mm였다. 이 값은 시스템의 허용오차인 0.17mm의 50% 수준으로 시스템은 대상물의 크기 측정에 적당하다고 사료되었다. 6. 절단된 수삼의 초음파 전달속도는 평균 396.4m/s였다.를 축열재로 사용할 경우 재생기를 반으로 나누어서 가열부 쪽에 철선을, 냉각부 쪽에 철망을 삽입한 것이 반대로 삽입한 것보다 재생기 양단의 온도차는 높게 나타났고, 재생기 양단의 압력 차는 낮게 나타났다. 재생기 축열재로서 철망-철선을 사용할 경우 철선-철망 ø1.2-150이 전열 표면적은 작으나 재생기 양단의 온도차가 가장 큰 것으로 나타났으며 재생기 양단의 압력 차는 가장 낮게 나타나 공시 철망- 철선 혼합 축열재중 가장 우수함을 알 수 있다. 4. 철망사이에 철선을 삽입한 축열재의 경우, 철망사이에 삽입한 철선의 직경이 큰 것이 철선의 직경이 작은 것보다 재생기의 양단의 온도차가 높게 나타났고 재생기 양단의 압력차는 작게 나타났다. 그러므로 철망사이에 철선을 삽입한 것 중 성능이 우수한 것은 150-ø2. 0-150으로 나타났다. 5. 실험한 재생기 축열재들 중에서 성능이 우수한 것들을 비교한 결과, 복합 철선 ø1.2-1 50이 가장 성능이 좋은 것으로 나타났다.적외선.열풍 복합건조방법이 높게 나타나 이것은 곡물 표면에 원적외선 방사에의한 복사열이 전달되어 열장해를 받았기 때문으로 판단되며, 금후 더 연구하여 적정 열풍온도 및 방사체 크기를 구명해야 할 것이다.으로 보여진다 따라서 옻나무 유래 F는 포유동물의 생식기능에 중요하게 작용하는 것으로 사료된다.된다.정량 분석한 결과이다. 시편의 조성은 33.6 at% U, 66.4 at% O의 결과를 얻었다. 산화물 핵연료의 표면 관찰 및 정량 분석 시험시 시편 표면을 전도성 물질로 증착시키지 않고, Silver Paint 에 시편을 접착하는 방법으로도 만족한 시험 결과를 얻을 수 있었다.째, 회복기 중에 일어나는 입자들의 유입은 자기폭풍의 지속시간을 연장시키는 경향을 보이며 큰 자기폭풍일수

  • PDF

Validation of GCOM-W1/AMSR2 Sea Surface Temperature and Error Characteristics in the Northwest Pacific (북서태평양 GCOM-W1/AMSR2 해수면온도 검증 및 오차 특성)

  • Kim, Hee-Young;Park, Kyung-Ae;Woo, Hye-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.721-732
    • /
    • 2016
  • The accuracy and error characteristics of microwave Sea Surface Temperature (SST) measurements in the Northwest Pacific were analyzed by utilizing 162,264 collocated matchup data between GCOM-W1/AMSR2 data and oceanic in-situ temperature measurements from July 2012 to August 2016. The AMSR2 SST measurements had a Root-Mean-Square (RMS) error of about $0.63^{\circ}C$ and a bias error of about $0.05^{\circ}C$. The SST differences between AMSR2 and in-situ measurements were caused by various factors, such as wind speed, SST, distance from the coast, and the thermal front. The AMSR2 SST data showed an error due to the diurnal effect, which was much higher than the in-situ temperature measurements at low wind speed (<6 m/s) during the daytime. In addition, the RMS error tended to be large in the winter because the emissivity of the sea surface was increased by high wind speeds and it could induce positive deviation in the SST retrieval. Low sensitivity at colder temperature and land contamination also affected an increase in the error of AMSR2 SST. An analysis of the effect of the thermal front on satellite SST error indicated that SST error increased as the magnitude of the spatial gradient of the SST increased and the distance from the front decreased. The purpose of this study was to provide a basis for further research applying microwave SST in the Northwest Pacific. In addition, the results suggested that analyzing the errors related to the environmental factors in the study area must precede any further analysis in order to obtain more accurate satellite SST measurements.

Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil (납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조)

  • Kim, Jinhoon;Lee, Sung Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.402-406
    • /
    • 2013
  • In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

Design of a Planar LPDA Antenna with Light-Weight Supporting Structure for Installing on an Aircraft (항공기 탑재용 경량화 지지 구조를 갖는 평면 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • This paper proposes a planar Log-Periodic Dipole Array(LPDA) antenna with light-weight supporting structure for installing on an aircraft. The proposed antenna is designed by applying a planar skeleton supporting structure that has light-weight for an aircraft and is capable of withstanding structural vibration. The material of the planar skeleton supporting structure is a Polyether ether ketone(Peek) which has excellent characteristics on strength and temperature. The proposed antenna is fabricated by attaching the radiating elements of the LPDA on both sides of the supporting structure. The changed input impedance due to the dielectric material of the supporting structure was compensated for by controlling the distance and length of several radiating elements. The 10-dB return loss bandwidths of the designed planar LPDA antenna with light-weight supporting structure are obtained as 0.4~3.1 GHz(7.3:1) in the simulation and 0.41~3.5 GHz(8.2:1) in the measurement. The average gains in 0.5~3 GHz band are 6.77 dBi in the simulation and 6.55 dBi in the measurement. Therefore, we confirm that the designed antenna is appropriate to be installed on an aircraft due to its light-weight structure and wideband directional radiation characteristics.

Establishment of Thermal Infrared Observation System on Ieodo Ocean Research Station for Time-series Sea Surface Temperature Extraction (시계열 해수면온도 산출을 위한 이어도 종합해양과학기지 열적외선 관측 시스템 구축)

  • KANG, KI-MOOK;KIM, DUK-JIN;HWANG, JI-HWAN;CHOI, CHANGHYUN;NAM, SUNGHYUN;KIM, SEONGJUNG;CHO, YANG-KI;BYUN, DO-SEONG;LEE, JOOYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.57-68
    • /
    • 2017
  • Continuous monitoring of spatial and temporal changes in key marine environmental parameters such as SST (sea surface temperature) near IORS (Ieodo Ocean Research Station) is demanded to investigate the ocean ecosystem, climate change, and sea-air interaction processes. In this study, we aimed to develop the system for continuously measuring SST using a TIR (thermal infrared) sensor mounted at the IORS. New SST algorithm is developed to provide SST of better quality that includes automatic atmospheric correction and emissivity calculation for different oceanic conditions. Then, the TIR-based SST products were validated against in-situ water temperature measurements during May 17-26, 2015 and July 15-18, 2015 at the IORS, yielding the accuracy of 0.72-0.85 R-square, and $0.37-0.90^{\circ}C$ RMSE. This TIR-based SST observing system can be installed easily at similar Ocean Research Stations such as Sinan Gageocho and Ongjin Socheongcho, which provide a vision to be utilized as calibration site for SST remotely sensed from satellites to be launched in future.

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.

A Study on the Effect of Sample Storage Condition on the RIA Results of Plasma renin activity Test (Plasma renin activity 검사의 검체 보관 방법이 방사면역 측정법 결과에 미치는 영향에 대한 고찰)

  • Choe, Jin-joo;Back, Song-ran;Yoo, Seon-hee;Lee, Sun-ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • Purpose Plasma renin activity (PRA) test is important for the diagnosis of primary aldosteronism. PRA is an easily deformed substance in vitro and affected by temperature changes. Laboratory of ASAN medical center has consistently found that there was a difference between the initial and re-experimental results. We compared and analyzed the differences in PRA test results according to the sample storage status. Materials and Methods The measurement of PRA was performed by using the radioimmunoassay. From August to September 2020, 43 PRA re-test samples were tested with different sample storage condition. The first group was re-examined by freezing the plasma-separated samples at -18℃, and the second group was re-examined with refrigerated EDTA sample. Also, additional tests were conducted on 13 PRA samples to verify the effect on thawing temperature differences in plasma-separated samples. The same samples were divided into two parts and stored frozen at -18℃, respectively, and thawing samples in room temperature and those in refrigerator were were conducted. Each result was compared and analyzed based on the initial experimental results. Results The results of re-examination after frozen storing plasma separation samples showed a lower correlation than the results of re-examination with EDTA plasma samples in refrigerator. When calculating the percentage based on the initial test results, the average percentage of each was 404.9% and 133.8%. The correlation coefficient was also R=0.8501 and R=0.9966, respectively, showing a higher correlation between plasma in the refrigerated sample EDTA tube. In comparison experiments with differences in thawing temperature, average percentage of the results of initial test and room temperature thawing was 94.3% and the average percentage of the results of refrigerated thawing was 88.0%. After again freezing the sample, the average percentage of the second room temperature thawing result is 107.5%, and the second refrigerated thawing group is 112.7%. Both groups showed an increase from first thawing. Conclusion A comparative analysis of retesting according to differences in sample storage methods in PRA tests showed a higher correlation between the results of retesting of the refrigerated EDTA plasma. And repeated freezing and melting of plasma separation samples, regardless of temperature during defrosting, has been shown to affect results. Therefore, retest of PRA should re-collect plasma from original EDTA plasma to increase reproducibility.

Fabrication and Characterization of Thermo-responsive Nanofibrous Surfaces Using Electron Beam Irradiation (전자선 조사에 의한 온도응답성 나노섬유 표면의 제조 및 특성분석)

  • Jeon, Hyeon-Ae;Oh, Hwan-Hee;Kim, Young-Jin;Ko, Jae-Eok;Chung, Ho-Yun;Kang, Inn-Kyu;Kim, Won-Il;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.359-365
    • /
    • 2008
  • We have fabricated a novel thermo-responsive nanofibrous surfaces by grafting PIPAAm by electron beam irradiation onto poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) nanofibrous mats. The electrospun PHBV nanofiber structures revealed randomly aligned fibers with average diameter of 400 nm. Increased atomic percent of nitrogen was observed on the PIPAAm-grafted PHBV mats after electron beam irradiation determined by ESCA. The amounts of PIPAAm-grafted onto PHBV films were $6.49{\mu}g/cm^2$ determined by ATR-FTIR. The PIPAAm-grafted surfaces exhibited decreasing contact angles by lowering the temperature from 37 to $20^{\circ}C$, while ungrafted PHBV surfaces had negligible contact angle change. This result indicates that PIPAAm surfaces, which are hydrophobic at the higher temperature, became markedly more hydrophilic in response to a temperature reduction due to spontaneous hydration of the surface-grafted PIPAAm. Thermo-responsive nanofibers showed good tissue compatibility. Cultured cells were well detached and recovered from the surfaces by changing culture temperature from 37 to $20^{\circ}C$.

Heat Transfer from Rectangular Fins with a Circular Base (원형 베이스와 사각 휜 주위의 열전달 해석)

  • Yu, Seung-Hwan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • The heat transfer over a radial heat sink, adapted for LED (light emitting diode) downlights, was experimentally and analytically investigated. We added radiation heat transfer into a previous calculation that neglected this factor. The numerical results agreed well with experimental results. Parametric studies were performed to compare the effects of the geometric parameters (fin length, fin height, ideal number of fins) and the operating parameter (heat flux) on the average heat-sink temperature from the heat-sink array. We found the fin length that maximizes the heattransfer performance. As the emissivity increased, the effect of geometric parameters on the radiation heat transfer decreased.

Preparation and Properties of Sulfonated Poly(ether ether ketone) (SPEEK) Electrospun Nanofibrous Ion-exchange Membrane for PEMFC (PEMFC용 설폰화 Poly(ether ether ketone) (SPEEK) 전기방사 나노섬유 이온교환막의 제조 및 특성)

  • Kwak, Noh-Seok;Choi, Eun-Jung;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.155-162
    • /
    • 2012
  • Sulfonated poly(ether ether ketone) (SPEEK) nanofibers were prepared by electrospinning. The nanofibrous membrane for polymer electrolyte membrane fuel cell (PEMFC) was fabricated by compression molding. The maximum degree of sulfonation was 95% and the initial thermal degradation temperature was $280^{\circ}C$ and it's value was lower than that of PEEK. The contact angle of SPEEK increased with decreasing the degree of sulfonation. The optimum voltage, flow rate, tip to collector distance (TCD) and concentration of electrospinning conditions were 22 kV, 0.3 mL/hr, 15 cm, and 23 wt%, respectively. The average nanofibrous diameter was 47.6 nm. The water uptake and ion exchange capacity of SPEEK nanofibrous membrane increased with increasing the sulfonation time and the amount of sulfonating agent. The electrical resistance and proton ionic conductivity of SPEEK membrane increased with decreasing and increasing the sulfonation time, respectively. Their values were 0.58~0.06 ${\Omega}{\cdot}cm^2$and 0.099 S/cm.