Preparation of Pitch for Melt-electrospinning from Naphtha Cracking Bottom Oil

납사 크래킹 잔사유로부터 용융전기방사용 핏치 제조

  • Kim, Jinhoon (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Sung Ho (Institute of Advanced Composites Materials, Korea Institute of Science and Technology) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • 김진훈 (충남대학교 공과대학 정밀응용화학과) ;
  • 이성호 (한국과학기술연구원) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Published : 2013.08.10

Abstract

In this study, a pitch for melt-electrospinning was prepared from naphtha cracking bottom (NCB) oil by the modification with heat treatment. The softening point and property of the modified pitch was influenced by modification conditions such as nitrogen flow rate, heat treatment temperature, and reaction time. Among these, the heat treatment temperature had a very strong influence on the distribution of molecular weight and softening point of the pitch. The C/H mole ratio and average molecular weight increased with increasing the heat treatment temperature due the decomposition and cyclization reaction of surface-functional groups. In addition, the values of benzene insoluble and quinoline insoluble also tends to decrease, and the width of molecular weight distribution seems to get more narrow. The carbon fiber with a diameter of $4.8{\mu}m$ was prepared from a modified pitch at the softening point of $155^{\circ}C$ by melt-electrospinning. It is believed that the melt-electro spinning method is much more convenient to get the thinner fiber than the conventional melt spinning method.

본 연구에서는 납사 크래킹 잔사유로부터 용융전기방사용 핏치가 열처리 개질 방법에 의하여 제조되었다. 개질된 핏치의 연화점과 물성은 질소유량, 열처리 온도 및 반응시간 같은 개질 조건에 따라 영향을 받았다. 이중에서 열처리온도가 핏치의 분자량 분포 및 연화점에 큰 영향력을 미쳤다. 열처리 온도가 증가함에 따라서 표면 작용기들의 분해와 고리화 반응으로 C/H 몰비와 평균분자량이 증가하였다. 또한, 벤젠 불용분(BI)과 퀴놀린 불용분(QI)값이 감소되었고, 분자량 분포의 폭이 더 좁아지는 것으로 보여주었다. 연화점이 $155^{\circ}C$인 개질 핏치로부터 용융전기방사법을 이용하여 $4.8{\mu}m$의 직경을 갖는 탄소섬유를 얻을 수 있었다. 용융전기방사법이 저섬경화 섬유를 제조하는데 기존의 용융방사법보다 더 용이할 것으로 여겨진다.

Keywords

References

  1. J. Donnet, T. K. Wang, J. C. M. Peng, and S. Rebouillats, Carbon Fibers, 463, Marcel Dekker, New York (1998).
  2. D. D. Eddie and J. J. McHugh, Carbon materials for advanced technologies, 119, Pergamon, New York (1999).
  3. A. D. Cato and D. D. Edie, Carbon, 41, 1411 (2003). https://doi.org/10.1016/S0008-6223(03)00050-2
  4. B. J. Kim, Y. S. Lee, and S. J. Park, Int. J. Hydrog. Energy, 33, 2254 (2008). https://doi.org/10.1016/j.ijhydene.2008.02.019
  5. J. P. Singh, D. Singh, and M. Sutaria, Comp.: Part A, 30, 445 (1999). https://doi.org/10.1016/S1359-835X(98)00133-X
  6. J. Donnet, T. K. Wang, J. C. M. Peng, and S. Rebouillats, Carbon Fibers, 1, Marcel Dekker, New York (1998).
  7. N. Yusof and A. F. Ismail, J. Anal. Appl. Pyrolysis, 93, 13 (2012).
  8. S. M. Zeng, T. Maeda, K. Tokumitsu, J. Mondori, and I. Mochida, Carbon, 31, 4139 (1993).
  9. J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, S. Yoshida, and A. Oya, Carbon, 32, 1277 (1994). https://doi.org/10.1016/0008-6223(94)90113-9
  10. E. Mora, C. Blanco, V. Prada, R. Santamaria, M. Granda, and R. Menendez, Carbon, 40, 2719 (2002). https://doi.org/10.1016/S0008-6223(02)00185-9
  11. M. L. Greene, R. W. Schwartz, and J. W. Treleaven, Carbon, 40, 1217 (2002). https://doi.org/10.1016/S0008-6223(01)00301-3
  12. F. Watanabe, S. Ishida, Y. Korai, I. Mochida, I. Kato, Y. Sakai, and M. Kamatsu, Carbon, 37, 961 (1999). https://doi.org/10.1016/S0008-6223(98)00251-6
  13. N. Diez, P. Alvarez, R. Santamaria, C. Blanco, R. Menendez, and M. Granda, Fuel Process. Technol., 93, 99 (2012). https://doi.org/10.1016/j.fuproc.2011.09.016
  14. F. Derbyshire, R. Andrews, D. Jacques, M. Jagtoyen, G. Kimber, and T. Rantell, Fuel, 80, 345 (2001). https://doi.org/10.1016/S0016-2361(00)00099-5
  15. M. Kunowskya, J. P. Marco-Lozara, D. Cazorla-Amorosa, and A. Linares-Solano, Int. J. Hydrog. Energy, 35, 2393 (2010). https://doi.org/10.1016/j.ijhydene.2009.12.151
  16. P. D. Daltona, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Moller, Polymer, 48, 6823 (2007). https://doi.org/10.1016/j.polymer.2007.09.037
  17. E. Zhmayev, H. J. Zhou, and Y. L. Joo, J. Non-Newton. Fluid Mech., 153, 95 (2008). https://doi.org/10.1016/j.jnnfm.2007.11.011
  18. E. Zhmayev, D. H. Cho, and Y. L. Joo, Polymer, 51, 4140 (2010). https://doi.org/10.1016/j.polymer.2010.06.058
  19. M. C. Kim, S. Y. Eom, S. K Ryu, and D. D. Edie, Korean Chem. Eng. Res., 43, 745 (2005).
  20. H. Marsh, M. Martínez-Escandell, and F. Rodriguez-Reinoso, Carbon, 37, 363 (1999). https://doi.org/10.1016/S0008-6223(98)00205-X
  21. Y. S. Lee, Y. V. Basova, D. D. Edie, L. K. Reid, S. R. Newcombe, and S. K. Ryu, Carbon, 41, 2573 (2003). https://doi.org/10.1016/S0008-6223(03)00376-2
  22. J. Musil and M. Zatloukal, Chem. Eng. Sci., 81, 146 (2012). https://doi.org/10.1016/j.ces.2012.06.049
  23. C. Berrueco, P. Alvarez, N. Diez, M. Granda, R. Menendez, C. Blanco, R. Santamaria, and M. Millan, Fuel, 101, 9 (2012). https://doi.org/10.1016/j.fuel.2011.10.005