In this paper, we present a method that automatically generates concatenate morpheme based language models to improve the performance of Korean large vocabulary continuous speech recognition. The focus was brought into improvement against recognition errors of monosyllable morphemes that occupy 54% of the training text corpus and more frequently mis-recognized. Knowledge-based method using POS patterns has disadvantages such as the difficulty in making rules and producing many low frequency concatenate morphemes. Proposed method automatically selects morpheme-pairs from training text data based on measures such as frequency, mutual information, and unigram log likelihood. Experiment was performed using 7M-morpheme text corpus and 20K-morpheme lexicon. The frequency measure with constraint on the number of morphemes used for concatenation produces the best result of reducing monosyllables from 54% to 30%, bigram perplexity from 117.9 to 97.3. and MER from 21.3% to 17.6%.
Journal of the Korea Society of Computer and Information
/
v.14
no.1
/
pp.9-15
/
2009
Ant Colony System is new meta heuristic for hard combinatorial optimization problem. The original ant colony system accomplishes a pheromone updating about only the global optimal path using global updating rule. But, If the global optimal path is not searched until the end condition is satisfied, only pheromone evaporation happens to no matter how a lot of iteration accomplishment. In this paper, the length of the global optimal path does not improved within the limited iterations, we evaluates this state that fall into the local optimum and selects the next node using changed parameters in the state transition rule. This method has effectiveness of the search for a path through diversifications is enhanced by decreasing the value of parameter of the state transition rules for the select of next node, and escape from the local optima is possible. Finally, the performance of Best and Average_Best of proposed algorithm outperforms original ACS.
While recommender systems were used by a few E-commerce sites former days, they are now becoming serious business tools that are re-shaping the world of I-commerce. And collaborative filtering has been a very successful recommendation technique in both research and practice. But there are two problems in personalized recommender systems, it is First-Rating problem and Sparsity problem. In this paper, we solve these problems using the associative relation clustering and “Lift” of association rules. We produce “Lift” between items using user's rating data. And we apply Threshold by -cut to the association between items. To make an efficiency of associative relation cluster higher, we use not only the existing Hypergraph Clique Clustering algorithm but also the suggested Split Cluster method. If the cluster is completed, we calculate a similarity iten in each inner cluster. And the index is saved in the database for the fast access. We apply the creating index to predict the preference for new items. To estimate the Performance, the suggested method is compared with existing collaborative filtering techniques. As a result, the proposed method is efficient for improving the accuracy of prediction through solving problems of existing collaborative filtering techniques.
Seismic data with missing traces are often obtained regularly or irregularly due to environmental and economic constraints in their acquisition. Accordingly, seismic data interpolation is an essential step in seismic data processing. Recently, research activity on machine learning-based seismic data interpolation has been flourishing. In particular, convolutional neural network (CNN) and generative adversarial network (GAN), which are widely used algorithms for super-resolution problem solving in the image processing field, are also used for seismic data interpolation. In this study, CNN-based algorithm, U-Net and GAN-based algorithm, and conditional Wasserstein GAN (cWGAN) were used as seismic data interpolation methods. The results and performances of the methods were evaluated thoroughly to find an optimal interpolation method, which reconstructs with high accuracy missing seismic data. The work process for model training and performance evaluation was divided into two cases (i.e., Cases I and II). In Case I, we trained the model using only the regularly sampled data with 50% missing traces. We evaluated the model performance by applying the trained model to a total of six different test datasets, which consisted of a combination of regular, irregular, and sampling ratios. In Case II, six different models were generated using the training datasets sampled in the same way as the six test datasets. The models were applied to the same test datasets used in Case I to compare the results. We found that cWGAN showed better prediction performance than U-Net with higher PSNR and SSIM. However, cWGAN generated additional noise to the prediction results; thus, an ensemble technique was performed to remove the noise and improve the accuracy. The cWGAN ensemble model removed successfully the noise and showed improved PSNR and SSIM compared with existing individual models.
Proceedings of the Acoustical Society of Korea Conference
/
1994.06c
/
pp.297-302
/
1994
본 논문에서는 국어 분절음 특성에 맞는 음성 데이터베이스의 모형을 제시하고자 한다. 음성 데이터 베이스는 1) 각 음의 고유음가정보, 2) 인접음 정보, 3) 빈도수에 따른 확률정보를 포함해야 한다. 이 요건을 충족시키기 위해 본 모형은 1) 음운 단위별로 Labeling 하여, 고유음과 인접음 정보를 편집하고, 2) 음운 규칙과 제약정보에 의해 Phoneme Balanced Words를 작성하여, 허용되는 인접음을 취하고, 허용되지 않는 인접음을 탈락시키며 3) 시스템 평가시, 빈도수가 shb은 음과 음소열의 우선적인 인식 및 합성을 우월하게 평가한다는 고정서, 4) 데이터 집적시, 데이터의 음운기능의 중복과 편중을 피함으로서 데이터량을 간소화할 수 있다는 경제성을 들 수 있다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.367-370
/
2005
본 논문에서는 정보 입자화와 유전자 알고리즘을 기반으로 최적 퍼지 다항식 뉴럴네트워크를 제안하고, 유전자 알고리즘을 사용하여 종합적인 설계방법을 개발한다. 제안된 모델은 기존의 진화론적 퍼지 다항식 뉴럴네트워크의 구조를 정보입자화를 통해 좀 더 빠르게 최적의 해공간에 접근시키는데 그 목적이 있다. 퍼지 관계기반 다항식 뉴럴네트워크는 퍼지 다항식 뉴론이 기초가 되어 가능한 구조적이고 요소적으로 모델의 성능을 향상 시켜준다. 퍼지 다항식 뉴런의 최적 구조를 위해 유전자 알고리즘을 이용하여 입력변수의 수와 후반부 다항식의 차수 입력변수 수에 따른 입력변수 그리고 멤버쉽 함수의 수를 동조한다. 여기서, 클러스터링의 하나의 방법인 HCM에 의해 퍼지 규칙 각각의 전반부와 후반부에 데이터 중심값을 이용하여 다항식함수의 파라미터값을 결정한다. 제안된 유전론적 퍼지 관계 다항식 뉴럴네트워크의 성능평가는 기존 퍼지 모델링에서 이용된 표준 데이터를 활용하여 평가한다.
Journal of the Korean Society of Industry Convergence
/
v.3
no.1
/
pp.53-59
/
2000
단섬유 보강 복합재료의 종횡비(aspect ratio)를 변화시키며 기계적 특성(탄성계수, 인장강도)을 평가하였다. 2차원 다중 파이버(multi-fiber) 모델을 이용하여 엇갈린(staggered) 배열과 규칙적(aligned) 배열에 대해 유한요소 해석을 하였다. 단섬유 복합재료의 유효탄성계수 및 인장강도는 섬유와 기지의 탄성계수비, 섬유 배열상태, 그리고 단섬유 종횡비의 함수로 표현되었으며, 해석결과의 탄성계수와 인장강도는 이론 모델의 결과와 사출 성형된 PEEK 복합재료 시험편의 결과와 비교하였다. 시험결과는 낮은 종횡비에서 이론 모델 결과와 일치함을 보였다. 단섬유 보강 복합재료의 배열 및 종횡비 변화에 따른 섬유보강 효과에 따른 계면응력 상태는 기계적 특성 결정에 중요한 영향을 보였다.
Proceedings of the Korean Institute of Industrial Safety Conference
/
2002.11a
/
pp.365-370
/
2002
근골격계 질환은 다른 질병과는 달리 직업적 특성 때문에 발생하는 질환자수가 많고 집단적으로 발생한다. 질환들의 예방활동은 단순하게 접근하거나 또는 1회 적인 예방활동으로는 원천적인 예방이 어려우므로 품질관리 시스템과 환경경영시스템을 참고하여 지속적인 관리와 더불어 조직적인 관리가 이루어 져야 한다. 이러한 목적을 달성하기 위해 사업장의 인간공학 관리시스템을 12가지 기본요소(방침 및 리더십, 조직, 계획, 책임, 평가 예방과 관리, 교육과 훈련, 의사소통, 규칙 및 절차, 내부 검사와 감사, 사고/질병 조사, 문서와 기록관리, 프로그램 평가)로 세분화하여 시행하였다. 이를 이용하여 pallet 적재방법, key hole 가공작업방법, 기판 수삽입 작업대 등을 개선한 사례를 제시하였다.
Proceedings of the Korean Information Science Society Conference
/
2005.07a
/
pp.76-78
/
2005
e-Learning분야에서 표준안으로 인정받고 있는 ADL의 SCORM에서 발표한 SCORM2004 Sequencing&Navigation은 동일한 학습객체를 사용하여 학습객체간의 다양한 상호관계를 설계, 적용할 수 있게 하였다. 그리고, 학습자와 학습객체와의 개별 상호작용을 추적, 평가하여 학습흐름을 안내함으로써 개별 적응적 조언 학습의 가능성을 보여주었다. 본 논문에서는 SCORM1.2기반의 LMS에 SCORM2004 S&N과 적응적 탐색을 지원하는 교통신호메타포를 구현하고 실제적으로 적용하고자 한다. 이로써, 학습설계에 따라 정해진 학습객체 상호간의 S&N규칙이 개별 학습자의 학습상태와 평가에 의해 다른 순서로 전달하거나 생략되어지고, 학습상태를 시각적으로 제공함으로써 적응적 조언 학습 설계에 대한 가능성을 실현할 수 있었다.
Proceedings of the Acoustical Society of Korea Conference
/
1998.06e
/
pp.278-281
/
1998
본 논문에서는 자연음성으로부터 통계적인 방법으로 일반적인 음성합성 규칙을 생성하기 위해, 남녀 각각 1명이 200문장에 대해 발성한 문음성 데이터를 음운 세그먼트, 음운 라벨링, 음운별 품사 태깅, 문법 정보 태깅하여 음성 데이터베이스를 구축하였다. 이 음성 데이터베이스로부터 휴지지속시간을 분석하여 긴 휴지와 짧은 휴지로 분류하였고, 이러한 휴지가 어느 경우에 나타나는가를 조사하였다. 음운지속시간을 보다 정교하게 예측하기 위하여, 각 음운의 고유 지속시간의 영향을 배제시킨 정규화 지속시간에 대해 2가지 class(장, 단)의 휴지시간을 고려한 회귀트리로 음운지속시간을 모델화하였다. 제안된 모델의 평가 결과 예측치와 관측치 간의 다중 상관 계수는 남성은 0.82, 여성은 0.84 정도로 평가되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.