• Title/Summary/Keyword: 펠릿 분해

Search Result 43, Processing Time 0.023 seconds

NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION (하이드레이트 펠릿의 비평형 분해과정 수치해석)

  • Kang, Jung-Ho;Nam, Jin-Hyun;Kim, Charn-Jung;Song, Myung-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

Effect of Bark and Drying Waste Liquor of Larix kaempferi Used as An Additive on The Fuel Characteristics of Wood Pellet Fabricated with Rigida Pine and Quercus mongolica Sawdust (첨가제로서 낙엽송의 수피 및 건조폐액이 리기다소나무 및 신갈나무 펠릿의 연료적 특성에 미치는 영향)

  • Yang, In;Chae, Hyun-Gyu;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.258-267
    • /
    • 2017
  • In this study, pitch pine (Pinus rigida, PIR) and Mongolian oak (Quercus mongolica, QUM) pellets were fabricated with bark or/and drying waste liquor (DWL) of larch (Larix kaempferi, LAK) as an additive. Based on the results of fuel characteristics of the pellets, optimal conditions for producing the high-quality pellets were provided. In the analysis of chemical composition, bark contained holocelluose and lignin of 90% and over. DWL had 0.1% solid assumed to sugars which are generated from the oven-drying of LAK logs. QUM showed high ash content (2.2%) by containing of bark in the sawdust. Bark and DWL of LAK had high ash content of 4% and over. Calorific values of all specimens and additives were higher than that of the $1^{st}$-grade standard of wood pellets designated by NIFOS (18.0 MJ/kg). PIR and QUM pellets were fabricated with additive of 2 wt% based on the solid weight of oven-dried sawdust using a piston-type flat-die pelletizer, and thus ash content and calorific value of the pellets did not affect by the use of additive. Durability of the pellets increased with the use of additive. Durabilties of pellets, which were fabricated with bark as an additive and DWL as a controller of moisture content for sawdust, did not differ from those of pellets without additives and were lower than those of pellets either with bark or DWL. However, use of both bark and DWL for the production of wood pellets might be favorable because it can make a profit from the collection process of DWL. Based on the results of fuel characteristics of the pellets, QUM and PIR pellets were produced by a flat-die pelletizer. Moisture content (MC), bulk density and durability of the pellets improved with the use of additive. Particularly, sawdust MC of 10% and the addition of bark or DWL for PIR as well as sawdust MC of 12% and the addition of bark for QUM might be optimal conditions for the production of high-quality pellets. Except for the ash content of QUM pellets, other properties of PIR and QUM pellets exceeded the $1^{st}$-grade wood pellets standards of NIFOS.

Study on the Synchronous Recycling of EAF Dust and Waste PVC (폐PVC와 전기로 제강분진의 동시재활용을 위한 기초연구)

  • Lee GyeSeung;Song YuungJun
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.47-56
    • /
    • 2003
  • PVC(polyvinyl chloride) powder were mixed with EAF(Electric Arc Furnace) dust and made as pellets. In order to recover the hydrochloride emitted from pyrolysis of PVC and the valuable metals in dust through making chlorides, pellets were roasted at $300 ^{\circ}C$ and investigated about the generation of chlorides. Two dust samples were collected at I steel making Co. and P Co. (called I dust and P dust respectively), which were mainly composed of zincite and franklinite. It was confirmed that about 50% of Zn in I dust and 48% of Zn in P dust compose zincite. The emission of HCl gas was completed in 15 min at 30$0^{\circ}C$ and the HCl mostly reacted with dust and made chlorides under 20% PVC mixed ratio. Because the reaction of HCl with zincite was faster than with franklinit, when generation and volatilization of ferric chloride is not allowed, the equivalent PVC powder mixed ratio in pellet depended on the amount of zincite in dust.

Evaluating The Fuel Characteristics of Wood Pellets Fabricated with Wood Tar and Starch as An Additive (목타르와 전분 첨가제 혼합에 따른 목재펠릿 품질특성 평가)

  • Ahn, Byoung-Jun;Lee, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • This study was conducted to investigate the potential of non-used forest biomass residues as raw materials for making wood pellets with additives such as wood tar and starch and to evaluate fuel characteristics of the pellets. Wood tar, a by-product provided from the carbonization process of wood, could be a suitable additive for wood pellet production due to its higher calorific value and lower hazardous heavy metals, such as cadmium and mercury, compared to woody biomass. When the wood tar (10 wt%) was added, the calorific value was increased from 4,630 kcal/kg (wood pellet without additive) to 4,800 kcal/kg (wood pellet with additive). With the increase of additive amount into wood pellet, the length and individual density of wood pellet increased. In addition, bulk density of the pellets was increased, whereas the fine content was decreased. Consequently the overall productivity of wood pellets was improved by adding 2 w% additives into wood pellets; the percentage of productivity increase was 5.9% and 4.9% for adding starch and wood tar, respectively.

Analysis of the Composting Effect on Cow Manure by Aeration and Comparison of Characteristics of Cow Manure Pellet Composts According to Granulation Processing Method (송풍유무에 따른 우분퇴비화 효과분석 및 우분퇴비의 입상화방법별 특성비교)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-jun;Ravindran, B.;Kwag, Jung-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.69-76
    • /
    • 2017
  • In the Korea, 80 percent of livestock manure were converted into compost and used as organic fertilizers. The livestock manure compost has two types of powder and pellet type (ID= 5~10 mm). The aim of this study was to investigate the properties of two types of cow manure compost pellet (cylinder and sphere type). Nitrogen concentrations of cylinder type and sphere type of compost pellets were 1.23 and 1.24%, respectively. There were similar with nitrogen concentration of cylinder and sphere types of compost pellets. As a result of analyzing the effect of granulation processing, it was found that the moisture content of the raw material was the most influential factor in the granulation processing in both of the processing types of the screw pressing method and the rotating cylinder method. When the cylinder and sphere types of compost pellets were dry to 20% of moisture content, the specific gravities of these compost pellets were 1.38 and 1.13, respectively. The compressive strength of cylinder type pellet and sphere type pellet were 27.6 and $11.3kg/cm^2$, respectively.

Production of High-density Solid Fuel Using Torrefeid Biomass of Larch Wood (낙엽송 반탄화 바이오매스를 이용한 고밀도 고형연료 생산)

  • Song, Dae-Yeon;Ahn, Byoung-Jun;Gong, Sung-Ho;Lee, Jae-Jung;Lee, Hyoung-Woo;Lee, Jae-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.381-389
    • /
    • 2015
  • In this study, the effects of moisture content and particles size of ground particles of torrefied larch chips on the pelletizing process were investigated depending on torrefaction conditions ($220^{\circ}C$-50 min, $250^{\circ}C$-50 min, $250^{\circ}C$-120 min). The moisture content in the torrefied chip decreased to 0.69~1.75%, while ash content and calorific value increased compared to untreated chip. In addition, weight loss significantly increased during torrefaction due to hemicellulose degradation. The carbon content in torrefied larch chip increased compare to untreated larch chip, while the hydrogen and oxygen contents decreased. The lignin and glucan contents in torrefied larch chip increased with increasing severity of the torrefaction condition, while hemicellulose decreased. In the particle size distribution of ground particles of torrefied larch chip, larch torrefied at severe conditions was found to produce smaller particles (~1 mm) than that of the larch torrefied at mild conditions. Macropore (over $500{\AA}$) in the torrefied particle was produced during torrefaction. During the pelletizing using ground particles of torrefied larch chip, the pressure needed in pelletizing decreased and pellet length increased with increasing moisture content, regardless of the particle size.

Reduction of Stainless Steelmaking Dust by Microwave Heating (마이크로파 가열에 의한 스테인레스강 분진의 환원)

  • 반봉찬;조환종
    • Resources Recycling
    • /
    • v.2 no.4
    • /
    • pp.10-16
    • /
    • 1993
  • Reduction behavior of stainless steelmaking dust by microwave heating process was investigated using coke and charcoal as reducing agents. Pellet dust and stanless steelmaking dust pelletized with reducing agent were reduced by the heating upto $1000^{\circ}C$ in microwave oven. The results showed that charcoal and coke seemed effective in the reduction of metals from stainless steelmaking dust by microwave heating and charocal was found to be better than coke. Degree of reduction seemed similar with the power of 500W and 700W in microwave oven. Dusts were rapidly reduced within 20 minutes. Reducing degree decreased in the order of Fe>Ni>Cr.

  • PDF

Decomposition Characteristics of 4-Chlorophenol Treated in Fe2O3 Supported γ-Alumina Catalyst and O3 (Fe2O3/γ-Al2O3 세라믹촉매와 오존을 이용한 4-클로로페놀의 분해특성)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.485-492
    • /
    • 2004
  • We prepared cylindrical y-alumina pellets using amorphous alumina and pore generating agent. The pellets were immersed in an aqueous solution of the mixture of Fe(NO$_3$)$_3$ㆍ9$H_{2}O$ and $CH_3$COOH. They were then hydrothermally treated at 20$0^{\circ}C$ for 3 h in autoclave, dried and calcined. For the application of environmental catalyst for its, we investigated the decomposition characteristics of 4-chlorophenol and the initiation characteristics of OH' conversion action in $O_3$ environment with or without the Fe$_2$O$_3$ supported ${\gamma}$-alumina catalyst and $O_3$ molecule.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

The influence of factors on the strength of formed coke made with anthracite and phenolic resin (무연탄(無煙炭)과 페놀수지(樹脂)의 혼합(混合)소성에 의해 제조(製造)된 함형(咸形)코크스의 강도(强度))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.57-61
    • /
    • 2008
  • The aim of this study is to produce the coke which can be used for the production of ferroalloy, by mixing phenolic resin and anthracite and sintering it. The influence of factors on the strength of coke were investigated. The results of this study are as follows: It is found that the anthracite coke of $100{\sim}150\;kgf/cm^2$ strength for ferroalloy can be made by a series of process as follows; Mixing homogeneously 6% liquefied phenolic resin and 6% water with $35{\sim}325$ mesh anthracite of low ash content. Making pellet by press the mixture in $10-50\;kgf/cm^2$ pressure. Dehydrating the pellet for 6 hrs at $50^{\circ}C$, and hardening it for 180 min at $200^{\circ}C$. Sinter the mixture for 6 hrs at $1,200^{\circ}C$.