• 제목/요약/키워드: 퍼지-슬라이딩 모드 제어기

검색결과 63건 처리시간 0.031초

학습 속도 재어 기능을 가진 적응 퍼지 슬라이딩 모드 제어기 설계 (Adaptive fuzzy sliding mode controller design using learning rate control)

  • 황은주;이희진;김은태;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.226-228
    • /
    • 2006
  • This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems are used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system, we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem, and convergence and robustness properties are demonstrated. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

  • PDF

비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기 (Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems)

  • 박장현;김성환;유영재;문채주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

불확실한 비선형 시스템의 퍼지 슬라이딩모드 제어기 설계 (Design of a Fuzzy-Sliding Mode Controller for an Uncertain Nonlinear System)

  • 허성회;박귀태;김권호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2290-2292
    • /
    • 2000
  • Robustness characteristics to the modelling imprecision and some disturbances could be achieved in sliding mode control. However, there are drawbacks such as discontinuous control and chattering. Recently, many researches have been developing to solve such the problems. In sliding mode control, overall control input could be divided into two parts which are equivalent control input and sliding mode control input. Sliding mode control input is a function of the switching surfaces and can be designed with their linear combinations. In this paper, the sliding mode control input is designed by TSK fuzzy model. The proposed method gives the continuous sliding control input and reject the chattering phenomenon.

  • PDF

불확실한 비선형 계통에 대한 간접 적응 퍼지 슬라이딩 모드 제어기 설계 (Design of Indirect Adaptive Fuzzy Sliding Mode Controller for Uncertain Nonliear Systems)

  • 서삼준;서호준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2081-2083
    • /
    • 2001
  • In this paper, without mathematical modeling dynamics, the plant parameter in sliding mode are estimated by the indirect adaptive fuzzy control. Adaptive laws for fuzzy parameters and fuzzy rule structure are established so that the whole system is stable in the sense of Lyapunov stability. The computer simulation results for inverted pendulum system show the performance of the proposed fuzzy sliding mode controller.

  • PDF

유전 알고리즘을 이용한 휴머노이드 로봇의 관절 제어기에 관한 연구 (A Study on the Joint Controller for a Humanoid Robot based on Genetic Algorithm)

  • 공정식;김진걸
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.640-647
    • /
    • 2007
  • 본 논문은 유전알고리즘을 기초로 한 휴머노이드 로봇의 관절 제어에 관한 논문이다. 휴머노이드 로봇은 지면에 고정된 시스템이 아니기 때문에 기본적으로 불안정성을 내포하고 있다. 게다가 각 관절의 비선형성은 로봇의 안정성에 악영향을 미친다. 이에 만약 둘 중 하나라도 안정하지 못하면 로봇은 보행 중에 넘어지게 될 것이므로, 휴머노이드 로봇의 안정성을 확보하기 위해서는 이 두 가지가 모두 고려되어야 할 것이다. 이에 본 논문에서는 보행 안정성을 확보하기 위해 이 두 가지 문제 중에 로봇의 비선형성을 제거하면서 로봇이 주어진 궤적을 잘 추종하여 제어할 수 있는 제어기를 제안하였다. 이 제어기는 퍼지-슬라이딩 모드 제어기를 기본으로 하고 있으면서 모션 제어기가 첨가되어 있다. 그리고 이때 이러한 제어 이득값을 유전알고리즘을 통해 추종함으로써 보다 정밀한 제어가 가능하도록 하여 휴머노이드 로봇이 보다 안정적으로 보행할 수 있도록 하였다. 이 모든 과정은 시뮬레이션과 실험을 통해 검증하였다.

퍼지-슬라이딩모드 제어기를 이용한 외바퀴 로봇의 자세제어 및 방향제어 (Attitude and Direction Control of the Unicycle Robot Using Fuzzy-Sliding Mode Control)

  • 이재오;한성익;한인우;이석인;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.275-284
    • /
    • 2012
  • This paper proposes an attitude and direction control of a single wheel balanced robot. A unicycle robot is controlled by two independent control laws: the mobile inverted pendulum control method for pitch axis and the reaction wheel pendulum control method for roll axis. It is assumed that both roll dynamics and pitch dynamics are decoupled. Therefore the roll and pitch dynamics are obtained independently considering the interaction as disturbances to each other. Each control law is implemented by a controller separately. The unicycle robot has two DC motors to drive the disk for roll and to drive the wheel for pitch. Since there is no force to change the yaw direction, the present paper proposes a method for changing the yaw direction. The angle data are obtained by a fusion of a gyro sensor and an accelerometer. Experimental results show the performance of the controller and verify the effectiveness of the proposed control algorithm.

적응 퍼지 슬라이딩 모드 제어기설계를 위한 새로운 해석 (An Analysis of Adaptive Fuzzy Sliding Mode Controller of Nonlinear System)

  • 공형식;황은주;박민용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.161-163
    • /
    • 2005
  • This paper is concerned with an Adaptive Fuzzy Sliding Mode Control(AFSMC) that the fuzzy systems are used to approximate the unknown functions of nonlinear system. In the adaptive fuzzy system. we adopt the adaptive law to approximate the dynamics of the nonlinear plant and to adjust the parameters of AFSMC. The stability of the suggested control system is proved via Lyapunov stability theorem. and convergence and robustness properties are demonstrated. The simulation results demonstrate that the performance is improved and the system also exhibits stability.

  • PDF

슬라이딩 모드를 이용한 HYBRID PID형 퍼지제어기 (HYBRID PID FLC using sliding Mode)

  • 문준호;조종훈;오광현;김태언;남문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.992-994
    • /
    • 1995
  • FLC has a good performance for complication system or unknown model by using human linguistic method but many part control design are based on expert knowledge or trial-error method and it is difficult to prove stability and robustness of controller. In this paper we improve this problem by setting fuzzy rules by dividing phase plane of error and rate of error change by switching surface. We can guarantee the stability in nonlinear system, and also in fuzzy PID type controller the complexity of controller design is increased by increasing the number of input variables and defining more range of operation if we want performance of more specific rules, thus we need to fine the method to decrease the number of control rules used in FLC design. In this paper the algorithm is validated by simulation using conventional FLC and proposed method.

  • PDF

퍼지 논리를 이용한 슬라이딩 모드 제어기의 인자 자동 튜닝

  • 류세희;박장현
    • 제어로봇시스템학회논문지
    • /
    • 제7권12호
    • /
    • pp.973-979
    • /
    • 2001
  • Sliding mode control guarantees robustness in the presence of modeling uncertainties and external disturbances. However, this can be obtained at the cost of high control activity that may lead to chattering As one way to alleviate this problem a boundary layer around sliding surface is typically used. In this case the selection of controller gain, control ban width and boundary layer thickness is a crucial problem for the trade-off between tracking error and chattering. The parameter tuning is usually done by trail-and-error in practice causing significant effort and time. An auto tuning method based on fuzzy rules is proposed in the paper in this method tracking error and chattering are monitored by performance indices and the controller tunes the design parameters intelligently in order to compromise both indices. To demonstrate the efficiency of the propose method a mass-spring translation system and a roboic control system are simulated and tested It is shown that the proposed algorithm is effective to facilitae the parameter tuning for sliding mode controllers.

  • PDF

Sliding Mode Control 및 Fuzzy Logic Control 방법을 이용한 AFS 및 ARS 제어기 설계 및 성능 평가 (Design and Evaluation of AFS and ARS Controllers with Sliding Mode Control and Fuzzy Logic Control Method)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.72-80
    • /
    • 2013
  • This study is to develop and evaluate an AFS and an ARS controllers to enhance lateral stability of a vehicle. A sliding mode control (SMC) and a fuzzy logic control (FLC) methods are applied to calculate the desired additional steering angle of AFS equipped vehicle or desired rear steer angle of ARS equipped vehicle. To validate AFS and ARS systems, an eight degree of freedom, nonlinear vehicle model and an ABS controllers are also used. Several road conditions are used to test the performances. The results showed that the yaw rate of the AFS and the ARS vehicle followed the reference yaw rate very well within the adhesion limit. However, the AFS improves the lateral stability near the limit compared with the ARS. Because the SMC and the FLC show similar vehicle responses, performance discrimination is small. On split-${\mu}$ road, the AFS and the ARS vehicle had enhanced the lateral stability.