• 제목/요약/키워드: 퍼지 집합

검색결과 415건 처리시간 0.023초

퍼지 컴퓨터

  • 오경환
    • 전기의세계
    • /
    • 제39권12호
    • /
    • pp.12-20
    • /
    • 1990
  • 기존의 이진논리는 애매모호한 인간의 지식을 표현하는데 많은 여러움이 있었다. 컴퓨터의 사고를 보다 인간에 가깝게 하기 위해 0과 1의 이진논리가 아닌, 0과1 사이의 실수로 애매모호함을 표현하는 Zadeh의 퍼지집합이론이 제안되었다. 이를 기초로 하여, 실제로 여러 종류의 퍼지 연산들을 수행하는 퍼지프로세서들이 개발되었으며, 퍼지 컴퓨터를 실현시키기 위한 연구가 활발히 진행되고 있다. 본고에서는 퍼지논리에 기초하여 퍼지정보처리(Fuzzy Information Processing)을 수행하는 대표적인 하드웨어 시스템인 퍼지 컴퓨터와 퍼지 컨트롤러 (fuzzy controller)에 대해 알아보고 다단계 퍼지 추론을 수행하는 퍼지 메모리 모듈(fuzzy memory module)의 기본인 퍼지 플립플롭에 대해 알아보고자 한다.

  • PDF

러프집합을 이용한 퍼지 규칙의 효율적인 감축 (The Optimal Reduction of Fuzzy Rules using a Rough Set)

  • 노은영;정환묵
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.881-886
    • /
    • 2007
  • 퍼지 추론은 애매한 지식을 효과적으로 처리할 수 있는 장점이 있다. 그러나 퍼지규칙의 연관속성은 규칙을 과다하게 생성하기 때문에 유용하고 중요한 규칙을 결정하는데 여러 가지 문제점이 있다. 본 논문에서는 러프집합을 적용하여 규칙간의 상관성을 고려하여 불필요한 속성을 제거하고, 퍼지 상대농도를 이용하여 추론결과의 정확성을 유지하면서 규칙의 수를 최소화 하는 방법을 제안한다. 실험결과 규칙의 개수는 감소되었으며 추론 결과가 감축하기 이전과 일치하고 규칙간의 중복성이 제거되는 것을 확인하였다.

공간탐색 진화알고리즘을 이용한 Interval Type-2 pRBF 뉴럴 네트워크의 구조적 해석 (Architectural Analysis of Type-2 Interval pRBF Neural Networks Using Space Search Evolutionary Algorithm)

  • 오성권;김욱동;박호성;이영일
    • 한국지능시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.12-18
    • /
    • 2011
  • 본 논문에서는 RBF 뉴럴 네트워크에서 은닉층 활성함수에 Interval type-2 퍼지개념을 적용한 새로운 RBF 뉴럴 네트워크를 설계하였다. 퍼지 시스템 분야에서 불확실한 정보에 대한 Type-1 퍼지집합의 성능을 보안하고자 Type-2 퍼지집합이 제안되었으며, 멤버쉽함수 안에 다시 멤버쉽함수를 생성함으로써 불확실한 정보를 좀 더 효과적으로 다루고자 하였다. 따라서 본 논문에서는 RBF 뉴럴 네트워크의 은닉층 활성함수에 type-2 퍼지집합의 개념을 적용하여 불확실한 정보에 대한 모델 성능을 개선하고자 하였다. 나아가 연결가중치를 상수항이 아닌 1차식으로 구성된 다항식을 사용하여 최종출력을 입력-출력의 관계식으로 표현하였다. 연결가중치는 기존의 경사하강법(Gradient Descent Method; GDM) 대신 conjugate gradient method(CGM)을 사용하여 파라미터를 동조하고, 은닉층의 활성함수는 공간탐색 진화 알고리즘(Space Search Evolutionary Algorithm; SSEA)을 이용하여 가우시안 함수의 중심점 및 분포상수를 동조하여 모델의 성능을 개선시킨다. 제안된 모델의 성능을 평가하기 위해 가스로 시계열 데이터를 사용하였으며, 결과를 기존 모델과 비교하였다.

구간값 퍼지집합, Intuitionistic 퍼지집합, Bipolar-valued 퍼지집합의 비교 (Comparison of Interval-valued fuzzy sets, Intuitionistic fuzzy sets, and bipolar-valued fuzzy sets)

  • 이건명
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.125-129
    • /
    • 2004
  • There are several kinds of fuzzy set extensions in the fuzzy set theory. Among them, this paper is concerned with interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. In interval-valued fuzzy sets, membership degrees are represented by an interval value that reflects the uncertainty in assigning membership degrees. In intuitionistic fuzzy sets, membership degrees are described with a pair of a membership degree and a nonmembership degree. In bipolar-valued fuzzy sets, membership degrees are specified by the satisfaction degrees to a constraint and its counter-constraint. This paper investigates the similarities and differences among these fuzzy set representations.

구간값 퍼지집합, Intuitionistic 퍼지집합, Bipolar-valued 퍼지집합의 비교 (Comparison of Interval-valued fuzzy sets, Intuitionistic fuzzy sets, and bipolar-valued fuzzy sets)

  • 이건명
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.12-15
    • /
    • 2001
  • There are several kinds of fuzzy set extensions in the fuzzy set theory. Among them, this paper is concerned with interval-valued fuzzy sets, intuitionistic fuzzy sets, and bipolar-valued fuzzy sets. In interval-valued fuzzy sets, membership degrees are represented by an interval value that reflects the uncertainty in assigning membership degrees. In intuitionistic sets, membership degrees are described with a pair of a membership degree and a nonmembership degree. In bipolar-valued fuzzy sets, membership degrees are specified by the satisfaction degrees to a constraint and its counter-constraint. This paper investigates the similarities and differences among these fuzzy set representations.

  • PDF

구간치 퍼지집합상에서 쇼케이적분에 의해 정의된 엔트로피에 관한 연구 (A note on entropy defined by Choquet integral on interval-valued fuzzy sets)

  • 장이채
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.157-160
    • /
    • 2006
  • 본 논문에서 우리는 Wang와 Li(1998)와 Turksen(1986)에 의해 소개된 구간치 퍼지집합을 생각하고 구간치 퍼지집합상에서 쇼케이적분에 의해 정의된 엔트로피를 조사한다. 더욱이 이러한 엔트로피와 관련된 성질들을 토의하고 간단한 예들을 알아본다.

  • PDF

퍼지수치 퍼지수 상의 쇼케이 거리측도에 관한 성질 (A note on the Choquet distance measures for fuzzy number-valued fuzzy numbers)

  • 장이채;김원주
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.365-369
    • /
    • 2006
  • 구간치 퍼지집합은 Gorzalczang(1983)과 Turken(1986)에 의해 처음 제의되었다. 이를 토대로 Wang과 Li는 구간치 퍼지수에 관한 연산으로 일반화 하여 연구하였다. 최근에 홍(2002)는 왕과 리의 이론을 리만적분에 의해 구간치 퍼지집합상의 거리측도에 관한 연구를 하였다. 우리는 일반측도와 관련된 리만적분 대신에 퍼지측도와 관련된 쇼케이적분을 이용한 구간치 퍼지수 상의 쇼케이 거리측도를 연구하였다(2005). 본 논문에서는 퍼지수에서 퍼지수로의 쇼케이 거리측도를 정의하고 이와 관련된 성질들을 조사하였다.

  • PDF

퍼지망을 이용한 한국어 품사 태깅 (A Part-of-Speech Tagging Using Fuzzy Network)

  • 김재훈;조정미;김창현;서정연;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1993년도 제5회 한글 및 한국어정보처리 학술대회
    • /
    • pp.593-603
    • /
    • 1993
  • 본 논문은 퍼지 망(Fuzzy Network)외 개념을 도입하여 한국어 단어의 품사 태깅에 관한 새로운 모델을 제시하고자 한다. 한국어 단어의 품사 태깅이란 여러 개의 품사를 가진 단어가 한국어 문장 속에 나타났을 때, 단어의 품사를 올바르게 결정하는 것이다. 여기서 가장 기본적인 문제는 여러 가지의 태그를 포함하고 있는 단어들의 나열을 어떻게 퍼지 망으로 표현하는가 하는 문제이다. 본 논문에서는 한국어 품사를 태깅할 때 사용한 퍼지 망을 정점(vertex)으로 단어 품사의 퍼지 집합을 표현하고, 연결선(edge)으로 품사와 품사간의 퍼지관계를 표현한다. 일단 퍼지망으로 표현되면, 퍼지망에서의 최적의 경로를 찾는 문제와 동일하게 풀 수 있다. 일반적으로 퍼지 망에서 최적의 경로를 찾는 문제는 dynamic programming 방법에 의해서 효과적으로 해결할 수 있다. 약 2만 6천개의 형태소를 실험 데이타로 하여 실험한 결과, 전체적인 품사 태깅 정확률은 95.6%로 비교적 좋은 결과를 보였다. 앞으로 좀 더 세분화된 태그 집합과 정확히 태깅된 실험 데이타로부터 추출된 소속함수를 이용한다면, 더 좋은 결과를 기대할 수 있다.

  • PDF

Type-2 퍼지 논리 시스템의 시계열 예측 공정으로 응용 (Application of Type-2 Fuzzy Logic System to Forecasting Time-Series Process)

  • 백진열;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.95-96
    • /
    • 2008
  • 본 논문에서는 시계열 예측 공정의 모델링을 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 기존의 Type-1 퍼지 논리 시스템(Fuzzy Logic System, FLS)은 외부의 노이즈와 같은 불확실성에 민감한 단점이 있다. 그러나 Type 퍼지 논기 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 효과적으로 취급할 수 있다. 여기서 불확실한 정보를 표현하기 위해 규칙의 전 후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부의 경우 HCM 클러스터링을 사용하여 입력 데이터들 간의 거리를 중심으로 멤버쉽 함수를 정의하고, 후반부는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘으로 멤버쉽 함수의 정점을 동조한다. 제안된 모델은 표준 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 특정 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치 석인 예를 보인다.

  • PDF