구간치 퍼지집합상에서 쇼케이적분에 의해 정의된 엔트로피에 관한 연구

A note on entropy defined by Choquet integral on interval-valued fuzzy sets

장이채 Lee Chae Jang

Dept. of Mathematics and Computer Science, Konkuk University

요약

본 논문에서 우리는 Wang와 Li(1998)와 Turksen(1986)에 의해 소개된 구간치 퍼지집합을 생각하고 구간 치 퍼지집합상에서 쇼케이적분에 의해 정의된 엔트로피를 조사한다. 더욱이, 이러한 엔트로피와 관련된 성 질들을 토의하고 간단한 예들을 알아본다.

Abstract

In this paper, we consider interval-valued fuzzy sets which were suggested by Wang and Li(1998) and Turksen(1986) and investigate entropy defined by Choquet integral on interval-valued fuzzy sets. Furthermore, we discuss some properties of them and give some examples related this entropy.

Key words: interval-valued fuzzy sets, entropy, Choquet integrals.

1. Introduction

Sugeno et al. [5,6] have studied some characterizations of Choquet integrals which is a generalized concept of Lebesgue integral, because two definitions of Choquet integral and Lebesgue integral are equal if a fuzzy measure is a classical measure. And also Choquet integral is often used in information nonlinear aggregation tool(see[2,5,6]).

Many researchers, such as Grabisch and Turksen[7], Burillo and Bustince[1], Liu Xuechang[8], and Jang and Kim[4] gave the axiom definitions of distance measure, similarity measure, and entropy on interval-valued fuzzy sets and have been applied to the fields of approximate inference, information theory, and control theory.

We consider interval-valued fuzzy sets which were suggested by Turksen [7]. Based on this, Burillo and Bustine[1], and Wang and Li[9] introduced entropy on interval-valued fuzzy sets. We note that entropy in[1,3,7,10] was defined by Lebesgue integral with respect to a classical measure.

In this paper, by using Choquet integral with respect to a fuzzy measure instead of Lebesgue integral with respect to a classical measure, we define entropy on interval-valued fuzzy sets. In section 2, we list arithmetic operations and some basic characterizations of interval-valued fuzzy sets and interval-valued Choquet integrals. In section 3, we introduce entropy defined by Choquet integral on interval-valued fuzzy sets and discuss their some characterizations.

2. Preliminaries and Definitions

Throughout this paper, I will denote the unit interval [0,1],

$$[I] = \{\bar{a} = [a^-, a^+] \mid a^-, a^+ \in I \text{ and } a^- \le a^+\}.$$

Then, according to Zadeh's extension principle[14], we can popularize these operations such as maximum (\land) , minimum (\lor) and complement (c) to [I] defined by

$$\overline{a} \lor \overline{b} = [a^- \lor b^-, a^+ \lor b^+],$$

 $\overline{a} \land \overline{b} = [a^- \land b^-, a^+ \land b^+], \text{ and}$
 $\overline{a}^c = [a^{+c}, a^{-c}] = [1 - a^+, 1 - a^-],$

thus $([I], \vee, \wedge, c)$ is a complete lattice with a minimal element $\overline{0} = [0,0]$ and a maximal element $\overline{1} = [1,1]$.

Definition 2.1. Let

 $\bar{a} = [a^-, a^+], \, \bar{b} = [b^-, b^+] \in [I].$ Then we define

$$\overline{a} = \overline{b}$$
 if and only if $a^- = b^-$ and $a^+ = b^+$,
 $\overline{a} \le \overline{b}$ if and only if $a^- \le b^-$ and $a^+ \le b^+$,
 $\overline{a} < \overline{b}$ if and only if $[a^-, a^+] \le [b^-, b^+]$
but $[a^-, a^+] \ne [b^-, b^+]$.

Let X be the discourse set, IF(X) stands for the set of all interval valued fuzzy sets in X, F(X) and $\wp(X)$ stand for the set of all fuzzy sets and crisp sets in X, respectively.

Definition 2.2. For every $A \in IF(X)$ and $x \in X$, $A(x) = [A^{-}(x), A^{+}(x)]$ is called the degree of membership of an element x to A, then fuzzy sets $A^{-}: X \rightarrow I$ and $A^{+}: X \rightarrow I$ are called a lower fuzzy set of A and an upper fuzzy set of A, respectively.

For simplicity, we denote $A = [A^-, A^+]$. Then, three operations such that such as \vee , \wedge , c can be introduced into IF(X) as follows: for every $A, B \in IF(X)$ and $x \in X$,

$$(A \lor B)(x) = A(x) \lor B(x),$$

$$(A \land B)(x) = A(x) \land B(x),$$

$$(A^{c})(x) = (A(x))^{c} = [A^{+c}(x), A^{-c}(x)]$$

$$= [1 - A^{+}(x), 1 - A^{-}(x)].$$

Then $(IF(X), \vee, \wedge, c)$ is a complete lattice with minimal element $\bar{0}(x) = [0,0]$ for all $x \in X$ and maximal element $\bar{1} = [1,1]$ for all $x \in X$. If $A, B \in IF(X)$, we define the following operations (see [7.10.11]):

$$A \leq B$$
 if and only if for all $x \in X$, $A^{-}(x) \leq B^{-}(x)$ and $A^{-}(x) \leq B^{-}(x)$, $A = B$ if and only if for all $x \in X$, $A^{-}(x) = B^{-}(x)$ and $A^{-}(x) = B^{-}(x)$, $A < B$ if and only if $A \leq B$ and $A \neq B$. Now, we introduce Choquet integrals and

Now, we introduce Choquet integrals and their basic properties which are used in the next section(see[5,6]).

Definition 2.3. (1) A fuzzy measure μ on a measurable space (X, \Im) is a nonnegative mapping $\mu: \Im \to [0, 1]$ satisfying

(i)
$$\mu(\emptyset) = 0$$
, $\mu(X) = 1$

(ii) $\mu(E_1) \leq \mu(E_2)$,

whenever $E_1, E_2 \in \mathcal{I}$, $E_1 \subset E_2$.

- (2) A fuzzy measure μ is said to be lower semi-continuous if for every increasing sequence $\{E_n\}$ of measurable sets, we have $\mu(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$.
- (3) A fuzzy measure μ is said to be upper semi-continuous if for every decreasing sequence $\{A_n\}$ of measurable sets and $\mu(A_1) < \infty$, we have $\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$.
- (4) If μ is both lower semi-continuous and upper semi-continuous, it is said to be continuous.

We note that " $x \in X \mu - a.e.$ " stands for " $x \in X \mu$ -almost everywhere". The property

P(x) holds for $x \in X$ $\mu - a.e.$ means that there is a measurable set A such that $\mu(A) = 0$ and the property P(x) holds for all $x \in A^c$, where A^c is the complement of A.

Definition 2.4. The Choquet integral of a measurable profile $f:X \to I$ with respect to a fuzzy measure μ is defined by

$$(C)\int fd\mu = \int_0^1 \mu_f(r) dr$$

where $\mu_f(r) = \mu \left(\left\{ x \in X \mid f(x) > r \right\} \right)$ and the integral on the right-hand side is an ordinary one.

(2) If X is a finite set, that is, $X = \{x_1, \dots, x_n\}$, then the Choquet integral of f on X is defined by

$$(C)\int fd\mu = \sum_{i=1}^{n} x_{(i)} \left[\mu\left(A_{(i)}\right) - \mu\left(A_{(i+1)}\right)\right]$$

where (\cdot) indicates a permutation on $\{1,2,\ldots,n\}$ such that $x_{(1)} \leq \cdots \leq x_{(n)}$. Also, $A_{(i)} = \{(i), \cdots, (n)\}$ and $A_{(n+1)} = \emptyset$.

Definition 2.5 Let f, g be measurable nonnegative functions. We say that f and g are comonotonic, in symbol $f \sim g$ if and only if

$$f(x) \langle f(x') \Rightarrow g(x) \leq g(x') \text{ for all } x, x' \in X.$$

Theorem 2.6 Let f, g, h be measurable functions. Then we have

- (1) $f \sim f$,
- (2) $f \sim g \Rightarrow g \sim f$,
- (3) $f \sim a$ for all $a \in \mathbb{R}^+$
- (4) $f \sim g$ and $f \sim h \Rightarrow f \sim (g+h)$.

Theorem 2.7 Let f, g be nonnegative measurable functions.

- (1) If $f \le g$, then $(C) \int f d\mu \le (C) \int g d\mu$.
- (2) If $f \sim g$ and $a, b \in R^+$, then (C) $\int (af + bg)d\mu = a(C) \int fd\mu + b(C) \int gd\mu$.

- (3) If $f \lor g$, then $(C) \int f \lor g \ d\mu \ge (C) \int f d\mu \lor (C) \int g d\mu.$
- (4) If $f \land g$, then $(C) \int f \land g \, d\mu \leq (C) \int f d\mu \land (C) \int g d\mu.$

3. Entropy defined by Choquet integral on interval-valued fuzzy sets

In this section, we introduce entropy defined by Choquet integral on interval-valued fuzzy sets. We recall that for $A, B \in IF(X)$, $A \equiv B$ if and only if

$$\mu(\{x \in X \mid A(x) \neq B(x)\}) = 0,$$

that is, A is equal to B μ -a.e. on X.

Definition 3.1. A real function $E: IF(X) \rightarrow I$ is called an entropy on IF(X) if E satisfies the following properties:

- (1) E(A) = 0 if A is a crisp set;
- (E) E(A) = 1 if and only if

$$A^{-}(x) + A^{+}(x) = 1$$
;

 (E_3) $E(A) \le E(B)$ if A is fuzzy less than B, that is, $A^-(x) \le B^-(x)$ and $A^+(x) \le B^+(x)$ for $B^-(x) + B^+(x) \le 1$

or $A^{-}(x) \ge B^{-}(x)$ and $A^{+}(x) \ge B^{+}(x)$ for $B^{-}(x) + B^{+}(x) \ge 1$;

(iv)
$$E(A) = E(A^c)$$
.

We define a real function $E_c: IF(X) \rightarrow I$ by

$$E_c(A) = 1 - (C) \int d_H(A^-(x), A^{+c}(x)) d\mu(x)$$

where $A = [A^-, A^+] \in IF(X)$ and d_H is the Hausdorff metric between A(x) and B(x). Since $A(x) = [A^-(x), A^+(x)]$ and $B(x) = [B^-(x), B^+(x)]$, it is easily to see that

$$\begin{split} d_{H}(A\left(x\right),B(x)) = \max\{\mid A^{+}(x) - B^{-}(x)\mid, \\ \mid A^{+}(x) - B^{+}(x)\mid \}. \end{split}$$

Theorem 3.2 A real function $E: IF(X) \rightarrow I$ is called an entropy on IF(X), we say that E_c is a Choquet entropy on IF(X).

We note that entropy on an interval-valued fuzzy set is important topic in fuzzy set theory and describes the fuzziness degree of an interval-valued fuzzy set. Zeng and Li [10] gave the following formulas to calculate entropy of interval-valued fuzzy set:

(1) If $X = \{x_1, \dots, x_n\}$ is a finite set and $A \in IF(X)$, then

$$E_1(A) = 1 - \sum_{i=1}^{n} |A^{-}(x_i) + A^{+}(x_i) - 1|.$$

(2) If X is a set and $A \in IF(X)$, then

$$E_{i}(A) = 1 - \frac{1}{b-a} \int x_{i} |A^{-}(x) + A^{+}(x) - 1| dx.$$

Theorem 3.3 If m is a counting measure on a finite set $X = \{x_1, \dots, x_n\}$ and if we put $\mu = \frac{1}{n}m$, then we have

$$E_{c}(A) = E_{1}(A)$$
 for all $A \in IF(X)$.

Theorem 3.4 Let $0 \le a < b$. If m is Lebesgue measure on a set X = [a,b] and if we put $\mu = \frac{1}{b-a}m$, then we have

$$E_c(A) = E_2(A)$$
 for all $A \in IF(X)$.

4. References

- [1] P.Burillo and H. Bustince, Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets, Fuzzy sets and systems Vol. 78, pp.305-316, 1996.
- [2] G. Choquet, Theory of capacities, Annales de l'Institut Fourier Vol.5 pp. 131-295, 1953.
- [3] Jin-Lum Fan, Yuan-Liang Ma and Wei-Xin Xie, On some properties of

- distance measures, Fuzzy Sets and Systems Vol.117,pp.355-361, 2001.
- [4] Lee-Chae Jang and Won Joo Kim, Some properties of Choquet distance measures for interval-valued fuzzy numbers, J. of Fuzzy Logic and Intelligent Systems, Vol.15 No.7, pp.789-793, 2005.
- [5] T. Murofushi and M. Sugeno, An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure, Fuzzy Sets and Systems Vol. 29 pp. 201–227, 1989.
- [6] T. Murofushi and M. Sugeno, A theory of Fuzzy measures: representations, the Choquet integral, and null sets, J. Math. Anal. and Appl. Vol. 159 pp. 532-549, 1991.
- [7] B. Turksen, Interval-valued fuzzy sets on normal forms, Fuzzy Sets and Systems Vol.20, pp.191-210, 1986.
- [8] Liu Xuechang, Entropy, distance measure and similarity measure of fuzzy sets and their relations, Fuzzy Sets and Systems Vol.52, pp.201-227, 1992.
- [9] G. Wang and X. Li, The applications of interval-valued fuzzy numbers and interval-distribution numbers, Fuzzy Sets and Systems Vol. 98, pp. 331–335, 1998.
- [10] W. Zeng and H. Li, Relationship between similarity measure and entropy of interval-valued fuzzy sets, Fuzzy Sets and Systems Vol. 157, pp.1477-1484, 2006.