Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.05a
/
pp.52-55
/
2001
퍼지 그래프는 그래프에 대한 정점들과 간선들의 소속정도를 표현할 수 있도록 일반 그래프를 확장한 그래프이다. 그러나 기준 퍼지 그래프는 명확한 정점들의 집합 위에서의 관계만을 표시할 수 있다. 본 논문에서는 퍼지 집합간의 관계를 표시할 수 있도록 확장된 레벨-2 퍼지 그래프를 제안한다. 본 논문에서는 레벨-2 퍼지 그래프를 정의하고 레벨-2 퍼지 그래프에서 수정되어야 하는 연산들과 레벨-2 퍼지 그래프의 특성에 대하여 소개한다. 제안된 레벨-2 퍼지 그래프는 퍼지 데이터 비교 및 퍼지 클러스터링 분야에 적용될 수 있다.
이 글에서는 신경회로망의 장점과 퍼지논리의 장점을 최대한 이용하며 각각의 단점을 보완하는 뉴로-퍼지 융합 기술과 현재 연구의 흐름을 간단히 살펴보았다. 비구조적인 정보 뿐만 아니라 구조적인 정보까지도 신경회로망의 영역 안에서 처리할 수 있는 새로운 뉴로-퍼지 회로망을 소개하였다. 소개한 뉴로-퍼지 회로망은 비퍼지화와 비퍼지화에 의해 발생하는 오차를 잘 보상할 수 있을 뿐만 아니라, 최적의 입출력 퍼지 소속 함수의 중심점과 모양을 찾을 수 있는 장점이 있다. 또한, 그 특성을 알지 못하는 임의의 비선형 동적 시스템에서 입출력 데이터만 얻을 수 있으며 시스템을 모델할 수 있는 퍼지 규칙을 언어적인 방법과 수치적인 방법으로 표현할 수 있으며 간단한 예제를 통한 시뮬레이션 결과를 보였다. 소개한 뉴로-퍼지 회로망을 이용하여 뉴로-퍼지 제어기를 구성할 수도 있으며, 또한 시스템의 역 퍼지 규칙을 찾는데 이용할 수도 있다. 향후 보다 우수한 일반화 성능을 가질 수 있는 뉴로-퍼지 회로망의 개발이 필요하며, 충분한 입출력 데이터를 얻는 방법의 연구도 필요하다.
Proceedings of the Society of Korea Industrial and System Engineering Conference
/
2002.05a
/
pp.45-50
/
2002
퍼지 균등화(fuzzy equalization)는 어의론적으로(semantically) 의미있고, 실험적으로 (experimentally) 의미있는 언어라벨(linguistic labels)을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝인 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 위치적 특성을 서술하였다. 이 특성은 추후 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 만드는데 유용하게 사용 될 수 있다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.303-306
/
2004
기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.
Journal of Korean Society of Industrial and Systems Engineering
/
v.25
no.6
/
pp.54-58
/
2002
퍼지 균등화는 어의론적으로 의미있고, 실험적으로 의미있는 언어레이블을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있었다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 또 다른 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝의 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 이를 위치적 특성으로 서술한다. 또한 이 특성을 이용하여 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 제시하고, 예를 들어 설명한다.
Fuzzy numbers represent fuzzy numeric values. However, it is difficult to clearly determine whether one fuzzy number is larger or smaller than other fuzzy numbers. Thus it is also difficult to determine the rank which a fuzzy number takes, or to select the k-th largest fuzzy number in a given set of fuzzy numbers. In this paper, we propose a fuzzy set based method to determine the rank of a fuzzy number and the k-th largest fuzzy number. The proposed method uses a given fuzzy greater-than relation which is defined on a set of fuzzy numbers. Our method describes the rank of a fuzzy number with a fuzzy set of ranks that the fuzzy number can take, and the k-th largest fuzzy number with a fuzzy set of fuzzy numbers which can be k-th ranked.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.6
/
pp.569-574
/
2000
본 논문에서는 유전 알고리듬을 이용한 웨이브렛 기반 퍼지 시스템 모델링에 대한 새로운 방법을 제안한다. 유전 알고리듬을 이용하여 웨이브렛 변환의 계수를 동정한 후 웨이브렛 변환과 등가관계에 있는 퍼지 시스템 모델을 형성한다. 웨이브렛 변환의 장점인 에너지 압축에 의해 적은 수의 계수를 이용하여도 정확한 모델을 획득할 수 있고 이는 적은 수의 규칙으로 정확한 퍼지 시스템 모델을 구성할 수 있다는 것을 의미한다. 또한 급격한 변화를 갖는 함수를 잘 나타낼 수 있다는 웨이브렛 변환의 장점에 의하여 기존의 퍼지 모델링으로는 좋은 모델을 획득할 수 없었던 문제를 해결하였다. 제안된 퍼지 모델의 우수성을 비선형성이 큰 함수를 모델링하고 이전의 연구와 비교함으로써 입증한다.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.3
/
pp.231-238
/
2002
As a modeling method where the merits of fuzzy inference system and evolutionary computation are put together, evolutionary fuzzy modeling performs global approximate optimization. The paper proposes fuzzy clustering as fuzzy rule generation process which is one of the most important steps in evolutionary fuzzy modeling. With application of fuzzy clustering into the experiment or simulation results, fuzzy rules which properly describe non-linear and complex design problem can be obtained. The efficiency of evolutionary fuzzy modeling can be improved utilizing the membership degrees of data to clusters from the results of fuzzy clustering. To ensure the validity of the proposed method, the real design problem of an automotive inner trim is applied and the global approximation is achieved. Evolutionary fuzzy modeling is performed for several cases which differ in the number of clusters and the criterion of rule selection and their results are compared to prove that the proposed method can provide proper fuzzy rules for a given system and reduce computation time while maintaining the errors of modeling as a satisfactory level.
Proceedings of the Korea Multimedia Society Conference
/
1998.04a
/
pp.394-399
/
1998
본 논문에서는 Kohonen SOM을 이용한 인식 학습 알고리즘인 LVQ를 이용하여 퍼지 규칙의 수를 줄이는 방안을 제안하였다. 많은 훈련 패턴을 입력하게 되면 그에 따른 퍼지 규칙 수가 증가하게 되고, 많은 기억용량과 분류에 긴 시간을 필요로 하는 문제점 있어 퍼지 규칙의 수를 줄이고자 한다. 그러나 퍼지 규칙의 수가 줄어듦으로서 발생하는 성능의 하락을 최소화하기 위하여 초기 참조 패턴이 입력 데이터에 근접하도록 훈련 된 후에 퍼지 규칙을 생성하였다. 생성된 퍼지 규칙은 LVQ를 이용하여 인식되기 바로 전에 가중치 벡터를 이용하여 근접하는 값 이내에 있는 가중치 벡터 값을 합하여 같은 퍼지 규칙을 부여하여 생성하였다. 그 결과로 5$\times$8 숫자 Gray scale를 이용하여 전체 146개의 가중치 벡터가 15개의 아주 적은 수의 퍼지 규칙으로 생성되었다.
본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.