• Title/Summary/Keyword: 퍼지 수

Search Result 2,359, Processing Time 0.027 seconds

Level-2 Fuzzy Graph (레벨-2 퍼지 그래프)

  • 이승수;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.52-55
    • /
    • 2001
  • 퍼지 그래프는 그래프에 대한 정점들과 간선들의 소속정도를 표현할 수 있도록 일반 그래프를 확장한 그래프이다. 그러나 기준 퍼지 그래프는 명확한 정점들의 집합 위에서의 관계만을 표시할 수 있다. 본 논문에서는 퍼지 집합간의 관계를 표시할 수 있도록 확장된 레벨-2 퍼지 그래프를 제안한다. 본 논문에서는 레벨-2 퍼지 그래프를 정의하고 레벨-2 퍼지 그래프에서 수정되어야 하는 연산들과 레벨-2 퍼지 그래프의 특성에 대하여 소개한다. 제안된 레벨-2 퍼지 그래프는 퍼지 데이터 비교 및 퍼지 클러스터링 분야에 적용될 수 있다.

  • PDF

뉴로-퍼지 회로망

  • 이민호;박철훈;이수영
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.83-91
    • /
    • 1995
  • 이 글에서는 신경회로망의 장점과 퍼지논리의 장점을 최대한 이용하며 각각의 단점을 보완하는 뉴로-퍼지 융합 기술과 현재 연구의 흐름을 간단히 살펴보았다. 비구조적인 정보 뿐만 아니라 구조적인 정보까지도 신경회로망의 영역 안에서 처리할 수 있는 새로운 뉴로-퍼지 회로망을 소개하였다. 소개한 뉴로-퍼지 회로망은 비퍼지화와 비퍼지화에 의해 발생하는 오차를 잘 보상할 수 있을 뿐만 아니라, 최적의 입출력 퍼지 소속 함수의 중심점과 모양을 찾을 수 있는 장점이 있다. 또한, 그 특성을 알지 못하는 임의의 비선형 동적 시스템에서 입출력 데이터만 얻을 수 있으며 시스템을 모델할 수 있는 퍼지 규칙을 언어적인 방법과 수치적인 방법으로 표현할 수 있으며 간단한 예제를 통한 시뮬레이션 결과를 보였다. 소개한 뉴로-퍼지 회로망을 이용하여 뉴로-퍼지 제어기를 구성할 수도 있으며, 또한 시스템의 역 퍼지 규칙을 찾는데 이용할 수도 있다. 향후 보다 우수한 일반화 성능을 가질 수 있는 뉴로-퍼지 회로망의 개발이 필요하며, 충분한 입출력 데이터를 얻는 방법의 연구도 필요하다.

  • PDF

Fuzzy Partitions with Fuzzy Equalization (퍼지 균등화 조건을 갖는 퍼지분할)

  • Kim Kyeongtaek;Kim Chongsu
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.45-50
    • /
    • 2002
  • 퍼지 균등화(fuzzy equalization)는 어의론적으로(semantically) 의미있고, 실험적으로 (experimentally) 의미있는 언어라벨(linguistic labels)을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝인 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 위치적 특성을 서술하였다. 이 특성은 추후 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 만드는데 유용하게 사용 될 수 있다.

  • PDF

Genetically Optimized Self-Organizing Fuzzy-Set based Polynomial Neural Networks (유전론적 최적 자기구성 퍼지 집합 기반 다항식 뉴럴네트워크)

  • 노석범;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.303-306
    • /
    • 2004
  • 기존의 퍼지 규칙에 기반을 둔 퍼지 다항식 뉴론(FPN)들로 구성된 SOFPNN은 데이터 수가 적고 비선형 요소가 많은 시스템에 대한 체계적이고 효율적인 최적 모델 을 구축할 수 있었으며 각 층 노드의 선택 입력을 변화시킴으로써 네트워크 구조 전체의 적응능력을 향상 시켰다. 유전자 알고리즘을 이용하여 자기구성 퍼지 다항식 뉴럴 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하여 최적 의 자기구성 퍼지 다항식 뉴럴 네트워크를 구축한다. 그러나, SOFPNN의 기본 뉴론인 퍼지 규칙 기반 다항식 뉴론의 경우 입력변수가 많아질수록 규칙수가 기하급수적으로 증가한다는 단점을 가지고 있으나 본 노문에서 제안한 퍼지 집합 기반 다항식 뉴론(FSPN)의 규칙수는 입력 변수들이 서로 독립적이므로 규칙의 증가가 퍼지 규칙 기반 다항식 뉴런보다는 적다는 장점을 가지고 있다. 이러한 특성을 기반으로 기존의 SOFPNN의 노드에 퍼지 규칙 기반 다항식 뉴런 대신에 퍼지 집합 기반 다항식 뉴런을 적용한 SOFPNN을 제안하여 기존의 SOFPNN과 성능을 비교하였다. 최적의 자기 구성 퍼지 집합기반 다항식 뉴럴 네트워크를 구축하기 위하여 SOFPNN에서처럼 유전자 알고리즘을 이용하여 네트워크의 입력변수의 수와 이에 해당되는 입력변수 그리고 규칙 후반부 다항식의 차수를 탐색하였다.

  • PDF

Two-Phased Fuzzy Partitions with Funny Equalization (퍼지 균등화존건을 갖는 2단 퍼지분할)

  • Kyeongtaek Kim;Chongsu Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.6
    • /
    • pp.54-58
    • /
    • 2002
  • 퍼지 균등화는 어의론적으로 의미있고, 실험적으로 의미있는 언어레이블을 붙이도록 하는 조건이다. 지금까지 발표된 퍼지 균등화조건을 갖는 퍼지분할을 생성하는 알고리듬은 주어진 데이터에 대하여, 오직 하나의 퍼지분할만을 생성할 수 있었다. 만일 생성된 퍼지 분할이 더 이상 유용하지 못한 것으로 판명되면, 이 알고리듬은 주어진 데이터에 대한 퍼지 균등화조건을 갖는 또 다른 퍼지분할을 생성할 수 없다. 이는 생성된 퍼지분할을 사용하여 탐색적 발견을 수행하는 데이터마이닝의 경우 더 이상 프로세스가 진행되지 못함을 의미한다. 본 연구에서는 주어진 데이터에 대한 퍼지 균등화조건을 갖는 서로 다른 두 퍼지분할이 존재한다면, 어떠한 관계가 있는지를 증명하고, 이를 위치적 특성으로 서술한다. 또한 이 특성을 이용하여 퍼지 균등화조건을 갖는 퍼지분할을 원하는 만큼 생성할 수 있는 알고리듬을 제시하고, 예를 들어 설명한다.

A Fuzzy Set based Method for Determining the Ranks of Fuzzy Numbers (퍼지집합을 이용한 퍼지숫자의 순위 결정 방법)

  • Lee, Jee-Hyong;Lee, Kwang-Hyung
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.723-730
    • /
    • 2000
  • Fuzzy numbers represent fuzzy numeric values. However, it is difficult to clearly determine whether one fuzzy number is larger or smaller than other fuzzy numbers. Thus it is also difficult to determine the rank which a fuzzy number takes, or to select the k-th largest fuzzy number in a given set of fuzzy numbers. In this paper, we propose a fuzzy set based method to determine the rank of a fuzzy number and the k-th largest fuzzy number. The proposed method uses a given fuzzy greater-than relation which is defined on a set of fuzzy numbers. Our method describes the rank of a fuzzy number with a fuzzy set of ranks that the fuzzy number can take, and the k-th largest fuzzy number with a fuzzy set of fuzzy numbers which can be k-th ranked.

  • PDF

Wavelet-Based Fuzzy System Modeling Using Genetic Algorithm (유전 알고리듬을 이용한 웨이브렛 기반 퍼지 시스템 모델링)

  • 이승준;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.569-574
    • /
    • 2000
  • 본 논문에서는 유전 알고리듬을 이용한 웨이브렛 기반 퍼지 시스템 모델링에 대한 새로운 방법을 제안한다. 유전 알고리듬을 이용하여 웨이브렛 변환의 계수를 동정한 후 웨이브렛 변환과 등가관계에 있는 퍼지 시스템 모델을 형성한다. 웨이브렛 변환의 장점인 에너지 압축에 의해 적은 수의 계수를 이용하여도 정확한 모델을 획득할 수 있고 이는 적은 수의 규칙으로 정확한 퍼지 시스템 모델을 구성할 수 있다는 것을 의미한다. 또한 급격한 변화를 갖는 함수를 잘 나타낼 수 있다는 웨이브렛 변환의 장점에 의하여 기존의 퍼지 모델링으로는 좋은 모델을 획득할 수 없었던 문제를 해결하였다. 제안된 퍼지 모델의 우수성을 비선형성이 큰 함수를 모델링하고 이전의 연구와 비교함으로써 입증한다.

  • PDF

Fuzzy Modeling and Fuzzy Rule Generation in Global Approximate Response Surfaces (전역근사화 반응표면의 생성을 위한 퍼지모델링 및 퍼지규칙의 생성)

  • Lee, Jong-Soo;Hwang, Jeong-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.231-238
    • /
    • 2002
  • As a modeling method where the merits of fuzzy inference system and evolutionary computation are put together, evolutionary fuzzy modeling performs global approximate optimization. The paper proposes fuzzy clustering as fuzzy rule generation process which is one of the most important steps in evolutionary fuzzy modeling. With application of fuzzy clustering into the experiment or simulation results, fuzzy rules which properly describe non-linear and complex design problem can be obtained. The efficiency of evolutionary fuzzy modeling can be improved utilizing the membership degrees of data to clusters from the results of fuzzy clustering. To ensure the validity of the proposed method, the real design problem of an automotive inner trim is applied and the global approximation is achieved. Evolutionary fuzzy modeling is performed for several cases which differ in the number of clusters and the criterion of rule selection and their results are compared to prove that the proposed method can provide proper fuzzy rules for a given system and reduce computation time while maintaining the errors of modeling as a satisfactory level.

Fuzzy Rules Generation using the LVQ (LVQ를 이용한 퍼지 규칙 생성)

  • 이남일;장광규;신웅철
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.394-399
    • /
    • 1998
  • 본 논문에서는 Kohonen SOM을 이용한 인식 학습 알고리즘인 LVQ를 이용하여 퍼지 규칙의 수를 줄이는 방안을 제안하였다. 많은 훈련 패턴을 입력하게 되면 그에 따른 퍼지 규칙 수가 증가하게 되고, 많은 기억용량과 분류에 긴 시간을 필요로 하는 문제점 있어 퍼지 규칙의 수를 줄이고자 한다. 그러나 퍼지 규칙의 수가 줄어듦으로서 발생하는 성능의 하락을 최소화하기 위하여 초기 참조 패턴이 입력 데이터에 근접하도록 훈련 된 후에 퍼지 규칙을 생성하였다. 생성된 퍼지 규칙은 LVQ를 이용하여 인식되기 바로 전에 가중치 벡터를 이용하여 근접하는 값 이내에 있는 가중치 벡터 값을 합하여 같은 퍼지 규칙을 부여하여 생성하였다. 그 결과로 5$\times$8 숫자 Gray scale를 이용하여 전체 146개의 가중치 벡터가 15개의 아주 적은 수의 퍼지 규칙으로 생성되었다.

  • PDF

Genetically Optimization of Fuzzy C-Means Clustering based Fuzzy Neural Networks (FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.405-406
    • /
    • 2007
  • 본 논문에서는 FCM 기반 퍼지 뉴럴네트워크 구조를 제안하고 진화 알고리즘을 이용한 FCM 기반 퍼지 뉴럴네트워크의 구조와 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM 기반 뉴럴 네트워크에서 멤버쉽함수는 가우시안, 삼각형 타입등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 후반부는 상수형, 선형, 2차식 등의 다양한 다항식 구조로 표현될 수 있으며 다항식의 계수는 LSE를 이용하여 결정한다. FCM 기반 퍼지 뉴럴 네트워크는 퍼지규칙의 수, 입력변수의 선택, 후반부 다항식의 차수, FCM의 퍼지화 계수의 결정은 성능에 많은 차이가 있으며 이러한 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 유전자 알고리즘을 이용하여 FCM 기반 퍼지뉴럴네트워크의 구조에 관련된 입력변수의 수, 퍼지규칙의 수 그리고 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화 한다. 제안된 방법은 비선형 시스템의 모델링에 적용하여 성능을 분석하였다.

  • PDF