• Title/Summary/Keyword: 팽창성 혼화재

Search Result 22, Processing Time 0.02 seconds

The Study on the Length Change of Concrete Used Expansive Admixture (팽창성 혼화재를 사용한 콘크리트의 길이변화 특성)

  • 민정기;김영익;서대석;김인수;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.289-293
    • /
    • 1999
  • This research was performed to evaluate the longitudinal length change ratio of concrete used the expansive admixture. As the results of this study, the compressive strength was shown the highest value at the used 10% expansive admixture both of the dry and wet curing condition. And the length change ration was shown higher 0.0316% and 0.0529 % than that of control in wet and dry curing condition. But this value was not enough to recover the shrinkage occuring by dry shrinkage. According to this study , we have obtained 10% on normal portland cement concrete as the optimum replacement ration of expansive admixture.

  • PDF

Strength Property and Freeze-Thaw Resistance of High Strength Concrete using Expansive Admixture (팽창성 혼화재를 사용한 고강도콘크리트의 기초물성 및 동결융해저항특성)

  • Moon Han-Young;Kim Byoung-Kwon;Ha Ju-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.117-120
    • /
    • 2004
  • Up to now, many researches have been performed md verified that many properties of concrete can be improved by using mineral admixtures such as blast furnace slag, silica fume, and expansive admixture. But it is not clear whether there is any need for entraining air to make a high strength concrete using expansive admixture and mineral admixtures to insure enough freeze-thaw resistance. this paper presents the strength and durability properties of high strength concrete using expasive admixtures and industrial by-products. It was observed from the test results that very high strength concrete$(W/B=20\%)$ is not needed to be air entrained and high strength concrete$(W/B=30\%)$ using expansive admixture and mineral admixtures is needed to be entrained $2\~4\%$ air.

  • PDF

A Feasibility Study on the Application of Ferrosilicon By-Product in Concrete to Replace Silica Fume (콘크리트 내 실리카퓸을 대체하기 위한 페로실리콘 산업부산물의 활용 적절성에 대한 연구)

  • Kim, Hansol;Cho, Won Jung;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.413-422
    • /
    • 2019
  • A ferrosilicon (FS) by-product was applied into a cementitious binder in concrete substituting the ordinary Portland cement (OPC). The original material characteristic of FS is very identical to silica fume (SF) regarding chemical composition and physical properties such as specific surface area and specific gravity. Therefore, the FS and SF concrete or mortal of which 10% of the material was replaced to total binder weight were fabricated to evaluate the feasibility of using F S as a binder, and the comparative information of OPC, FS and SF concrete was given. The hydration characteristic of FS concrete was analyzed using X-ray diffraction analysis. The FS concrete was beneficial in compressive strength, resistivity against chloride ingress and reducing porosity considering performance of OPC concrete but the advantage was less than using SF. A possibility of alkali-silica expansion was found out from the FS concrete due to the agglomerated size of the silica particles.

Experimental Study on the Application of Concrete Admixture using the EAF Reduction Slag (전기로 환원 슬래그 미분말의 콘크리트용 혼화재 적용성에 관한 실험적 연구)

  • Choi, Jae-Seok;Jang, Pil-Sung;Jo, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6890-6897
    • /
    • 2014
  • EAF reduction slag has unstable properties of expansion and destruction. Therefore, it cannot be used as a construction material. The purpose of this study was to use EAF reduction slag as a concrete admixture. EAF reduction slag contains $11CaO{\cdot}7Al_2O_3{\cdot}CaF_2$ and ${\beta}-C_2S$ (calcium aluminate compounds). To confirm the properties of EAF reduction slag as a concrete admixture, the condensation, compressive strength and activity factor due to substitution rate of EAF reduction slag were measured. Originally, EAF reduction slag was cured rapidly because of its chemical composition ($11CaO{\cdot}7Al_2O_3{\cdot}CaF_2$). On the other hand, when 8% gypsum was added, its properties of condensation and compressive strength were similar to the plain specimen. When 6% gypsum was added, the quality of the KS F 2536 standards (quality standard number 3) were met in terms of activity factor. Overall, 8% gypsum addition is the most appropriate by considering the activity factor in the long-term compressive strength.

The Development of Cement Treated Base Material with Restraint Reflection Crack (반사균열을 억제한 시멘트 안정처리 기층 재료개발)

  • Kang, Sung-Cheul;Lee, Kang-Won;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.33-43
    • /
    • 2005
  • This paper describes a new approach to minimize the amount of shrinkage cracking in cement treated base(CTB). CTB is a stiffness base having lots of merits such as higher rutting resistance, minimizing fatigue cracking, and the ability to distribute upper loads. However, It is not applied to asphalt pavement system in Korea because of possible cracks caused by dry shrinkage. The goal of this study is the development of cement treated base with lower shrinkage for preventing reflection cracks and rutting. After identifying factors affecting dry shrinkage and analyzing mechanism of each admixture, the laboratory and field tests were designed and performed. Through the preliminary tests, the mix design containing 25 percent o( fly ash and 7 percent of cement was suggested. This mix design was satisfied with strength for Korea specification standard. According to the results considering strength, shrinkage, and economical efficiency, two mix designs were selected; 1) containing 25 percent of fly ash and 2) containing 25 percent of fly ash with 10 percent of expensive additive. For field test based on the result of laboratory test, the optimized alternative in cement treated base with lower shrinkage was the mix design containing 25 percent of fly ash with 10 percent of expansive additive.

  • PDF

Mock-up Crack Reduction Performance Evaluation of Blast Furnace Slag Concrete Mixed with Expansive and Swelling Admixture (팽창재와 팽윤제가 혼입된 고로슬래그 콘크리트 Mock-up의 균열 저감 성능평가)

  • Sang-Hyuck Yoon;Won-Young Choi;Chan-Soo Jeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.552-559
    • /
    • 2023
  • The purpose of this study is to evaluate the crack reduction performance of blast furnace slag concrete mixed with expansive and swelling admixtures. As a basic performance test, various ingredients such as blast furnace slag fine powder (BFS), calcium sulfoaluminate (CSA), bentonite, and hydroxypropyl methyl cellulose (HPMC) were used, and the results showed that bentonite showed superior performance compared to HPMC. Afterwards, a MOCK-UP test was conducted to evaluate cracking and drying shrinkage according to the mixing ratio. As a result, when bentonite and a small amount of calcium phosphate were added, drying shrinkage was reduced and cracking was reduced. In particular, a cement mixture consisting of 30 % BFS, 1 % bentonite, and 1 % calcium phosphate showed optimal crack-free performance. It is believed that BFS concrete will contribute to compensating for shrinkage through continuous expansion activity and can be used for field applications.

Properties of Undispersed Underwater Mortar Using the Expansive Additives and Fly Ash (팽창재 및 플라이애쉬를 이용하는 수중불분리 모르터의 특성)

  • 한천구;이대주;이광설;한일영;권지훈;유홍종
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.223-231
    • /
    • 1998
  • Existing cast in place piles made by grouting cement mortar have many problems that cracks by autogeneous and drying shrinkage bring about the deterioration of force for piles, segregations by the submersion of ground water occur and also, high cement contents lead to rise the manufacturing cost. Therefore, this study is intended to investigate the mechanical properties of high performance mortar, incorporating expansive additives and fly ash. for cast in place piles. According to the experimental results, as the contents of expansive additives increase in mortar mixture, fluidity decrease and air contents shows inverse tendency. Setting time is delayed. Although compressive strength at 7days shows a decline tendency. compressive strength at 28days and 91days increase slightly with 5% of expansive additives. As fly ash increase in mortar mixture, high fluidity is shown, air contents increase and setting time is delayed at fresh state, and additives are, the larger length change is, whereas shrinkage decrease with the increase of fly ash.

Prediction Model on Autogenous Shrinkage of High Performance Concrete (고성능 콘크리트의 자기수축 예측모델에 관한 연구)

  • Yoo, Sung-Won;Soh, Yang-Sub;Cho, Min-Jung;Koh, Kyung-Taek;Jung, Sang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.97-105
    • /
    • 2006
  • The autogenous shrinkage of high-performance concrete is important in that it can lead the early cracks in concrete structures. The purpose of the present study is to explore the autogenous shrinkage of high-performance concrete with admixture and to derive a realistic equation to estimate the autogenous shrinkage model of that. For this purpose, comprehensive experimental program has been set up to observe the autogenous shrinkage for various test series. Major test variables were the type and contents of admixture and water-cement ratio is fixed with 30%. The autogenous shrinkage of HPC with fly ash slightly decreased than that of OPC concrete, but the use of blast furnace slag increased the autogenous shrinkage. Also, the autogenous shrinkage of HPC is found to decrease with increasing shrinkage reduction agent and expansive additive. A prediction equation to estimate the autogenous shrinkage of HPC with admixture was derived and proposed in this study. The proposed equation show reasonably good correlation with test data on autogenous shrinkage of HPC with mineral and chemical admixture.

Sulfate Resistance of Alkali-Activated Materials Mortar (알칼리 활성화 결합재 활용 모르타르의 황산염 침식 저항성)

  • Park, Kwang-Min;Cho, Young-Keun;Lee, Bong-Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.94-101
    • /
    • 2016
  • This paper presents an investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(0, 30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0) and initial curing temperatures($23^{\circ}C$ and $70^{\circ}C$). The tests involved immersions for a period of 6 months into 10% solutions of sodium sulfate and magnesium sulfate. The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, as higher GGBFS replace ratio or Ms shown higher compressive strengths on 28 days. In case of immersed in 10% sodium sulfate solution, the samples shows increase in long-term strength. However, for samples immersed in magnesium sulfate solutions, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$); the gypsum increased up to 6 months continuously.

Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC) (초고성능 시멘트 복합체의 초기 재령 구속 수축 및 인장 크리프 특성)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.581-590
    • /
    • 2011
  • Since ultra-high performance cementitious composites (UHPCC) not only represents high early age shrinkage strain due to its low water-to-binder ratio (W/B) and high fineness admixture usage but also reduces the cross section of structure from the higher mechanical properties, it generally has more shrinkage cracks from the restraints of formwork and reinforcing bars. In this study, free and restrained shrinkage experiments were conducted to evaluate the suitability of incorporating both expansive admixture (EA) and shrinkage reducing agent (SRA). The test results indi-cated that approximately 40~44% of free shrinkage strain was decreased. Also, the results showed that 35% and 47% of residual tensile stresses were relieved by synergetic effect of SRA and EA, respectively. Residual tensile stresses from ringtest were relaxed by approximately 61% and 64% of elastic shrinkage stresses due to SRA and EA, respectively, because of the tensile creep effect. Therefore, the creep effect should be considered to precisely estimate the restrained shrinkage behavior of concrete structures. The degree of restraint of UHPCC was approximately in the range of 0.78~0.85. The addition of combined EA and SRA showed minute influence on the degree of restraint. However, the effect decreased when thicker concrete ring was used. Tensile creep strains were measured and compared to the predicted values from 4-parametric prediction model considering time dependent restrained forces.