• Title/Summary/Keyword: 팽윤

Search Result 697, Processing Time 0.026 seconds

A Study for Crystal Growth Inhibition of Ettringite by Solution Synthesis Experiment (용액합성실험에 의한 에트린자이트 결정성장억제 연구)

  • Lee, Hyo-Min;Hwang, Jin-Yeon;Oh, Ji-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.51-61
    • /
    • 2010
  • Ettringite $(Ca_6[Al(OH)_6]_2(SO_4)_3{\cdot}26H_2O)$ is a sulfate mineral that shows a complicate property in concrete. It is often called as "a cancer of concrete" because secondary ettringite formation in hardened concrete often cause expansion and cracking of concrete due to its expansive crystal structure. In the present study, we tested the possibility for crystal growth inhibition of secondary ettringite by crystallization inhibitors that are commercially used for scaling inhibitors in Korea. For the test, we developed a method of ettringite solution synthesis. Three types of crystallization inhibitors were selected and examined the effects On ettringite growth inhibition. The experimental results of ettringite solution synthesis indicated that ettringite was successfully synthesized under condition that the mass balance between calcium hydroxide saturated solution and aluminum sulfate solution was attained. Monosulfate and semisulfate were synthesized when the ratio of $Ca^{2+}$ ions to ${SO_4}^{2+}$ ions was increased. The induction time of ettringite crystallization was less than 2 min. and crystallization was almost completed within an hour. The experimental results of ettringite crystallization inhibition showed that organic PBCT (2-Phosphonobutane-1,2,4-Tricarboxylic Acid) and inorganic SHMP (Sodium Hexametaphosphate) were relatively less effective on ettringite crystallization inhibition under experimental conditions. However, organic HEDP (1-Hydoxyethylidene-1,1-Diphosphonic Acid) effectively prevented ettringite growth with producing amorphous gel phase materials up to inhibitor concentration 0.1 vol.% of aluminum sulfate solution.

Physicochemical Properties and Hot Air-Dried and Spray-Dried Powders Process of Sweet Potato and Steamed Sweet Potato (열풍건조 및 분무건조 공정을 이용한 생 고구마와 찐 고구마 분말제조 및 물리화학적 품질특성)

  • Gu, Yul-Ri;Chae, Ho-Yong;Hong, Joo-Heon
    • Journal of Chitin and Chitosan
    • /
    • v.22 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • This study was conducted to examine the physicochemical properties and hot air-dried and spray-dried powders process of sweet potato and steamed sweet potato. The moisture and the total starch contents were 1.66~2.19% and 52.65~57.42%, respectively. The total starch contents increased during process steaming. The water absorption index of the spray-dried powders (0.97 and 2.03) was lower than that of the hot air-dried powders (2.12 and 4.71), and the water solubility index of the spray-dried powders (83.83 and 86.95%) was higher than that of the hot air-dried powders (68.40 and 81.21%). The particle size and outer topology of the spray-dried powders were 46.18 and $65.53{\mu}m$, and its shape was generally globular. In the DSC analysis of this study, the $T_o$ of the spray-dried powders (64.40 and $67.80^{\circ}C$), $T_p$ of the spray-dried powders (74.40 and $78.20^{\circ}C$), and $T_c$ of the spray-dried powders (81.10 and $81.60^{\circ}C$) was higher than that of the hot air-dried powders. The solubility contents of the spray-dried powders (68.21 and 80.73%) was lower than that of the hot air-dried powders, and the swelling power contents of the spray-dried powders (14.79 and 15.35%) was higher than that of the hot air-dried powders. The amylose contents of spray-dried powders (11.67 and 12.51%) was lower than that of the hot air-dried powders. The soluble dietary fiber contents of spray-dried powders (1.34 and 2.02%) was higher than that of the hot air-dried powders.

Production and characterization of rice starch from stale rice using improved enzymatic digestion method (개선된 효소소화법에 의한 고미로부터 쌀전분의 생산 및 특성)

  • Kim, Reejae;Lim, SongI;Kim, Hyun-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.749-755
    • /
    • 2021
  • The objective of this study was to investigate the physicochemical properties of rice starch extracted from stale rice using alkaline steeping (AKL) and improved enzymatic digestion (iENZ) methods. The crude protein content (0.5-0.7%) of stale rice starch (SRS) was less than 1% by iENZ, but not so when measured by the existing ENZ methods. SRS is an intermediate amylose rice starch. AKL-SRS and iENZ-SRS exhibited typical A-type crystal packing arrangements with similar relative crystallinities. iENZ-SRS showed higher gelatinization onset and peak temperatures with a narrower gelatinization temperature range, compared to those of AKL-SRS, indicating that iENZ annealed SRS. Thus, iENZ-SRS exhibited lower swelling power and solubility, and higher pasting viscosities with delayed viscosity development. Overall, the use of stale rice as a rice starch source could make economical production of rice starch possible, and iENZ may diversify rice starch characteristics, which expands the utilization of rice starch in food and non-food industries.

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization (유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사)

  • Seong, Hyeon Jun;Lee, Bo-Bae;Kim, Duck-Hyun;Lee, Seung-Hyun;Ha, Ji-Young;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.

Numerical Analysis of Coupled Thermo-Hydro-Mechanical (THM) Behavior at Korean Reference Disposal System (KRS) Using TOUGH2-MP/FLAC3D Simulator (TOUGH2-MP/FLAC3D를 이용한 한국형 기준 처분시스템에서의 열-수리-역학적 복합거동 특성 평가)

  • Lee, Changsoo;Cho, Won-Jin;Lee, Jaewon;Kim, Geon Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.183-202
    • /
    • 2019
  • For design and performance assessment of a high-level radioactive waste (HLW) disposal system, it is necessary to understand the characteristics of coupled thermo-hydro-mechanical (THM) behavior. However, in previous studies for the Korean Reference HLW Disposal System (KRS), thermal analysis was performed to determine the spacing of disposal tunnels and interval of disposition holes without consideration of the coupled THM behavior. Therefore, in this study, TOUGH2-MP/FLAC3D is used to conduct THM modeling for performance assessment of the Korean Reference HLW Disposal System (KRS). The peak temperature remains below the temperature limit of $100^{\circ}C$ for the whole period. A rapid rise of temperature caused by decay heat occurs in the early years, and then temperature begins to decrease as decay heat from the waste decreases. The peak temperature at the bentonite buffer is around $96.2^{\circ}C$ after about 3 years, and peak temperature at the rockmass is $68.2^{\circ}C$ after about 17 years. Saturation of the bentonite block near the canister decreases in the early stage, because water evaporation occurs owing to temperature increase. Then, saturation of the bentonite buffer and backfill increases because of water intake from the rockmass, and bentonite buffer and backfill are fully saturated after about 266 years. The stress is calculated to investigate the effect of thermal stress and swelling pressure on the mechanical behavior of the rockmass. The calculated stress is compared to a spalling criterion and the Mohr-Coulumb criterion for investigation of potential failure. The stress at the rockmass remains below the spalling strength and Mohr-Coulumb criterion for the whole period. The methodology of using the TOUGH2-MP/FLAC3D simulator can be applied to predict the long-term behavior of the KRS under various conditions; these methods will be useful for the design and performance assessment of alternative concepts such as multi-layer and multi-canister concepts for geological spent fuel repositories.

A review on the design requirement of temperature in high-level nuclear waste disposal system: based on bentonite buffer (고준위폐기물처분시스템 설계 제한온도 설정에 관한 기술현황 분석: 벤토나이트 완충재를 중심으로)

  • Kim, Jin-Seop;Cho, Won-Jin;Park, Seunghun;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.587-609
    • /
    • 2019
  • Short-and long-term stabilities of bentonite, favored material as buffer in geological repositories for high-level waste were reviewed in this paper in addition to alternative design concepts of buffer to mitigate the thermal load from decay heat of SF (Spent Fuel) and further increase the disposal efficiency. It is generally reported that the irreversible changes in structure, hydraulic behavior, and swelling capacity are produced due to temperature increase and vapor flow between $150{\sim}250^{\circ}C$. Provided that the maximum temperature of bentonite is less than $150^{\circ}C$, however, the effects of temperature on the material, structural, and mineralogical stability seems to be minor. The maximum temperature in disposal system will constrain and determine the amount of waste to be disposed per unit area and be regarded as an important design parameter influencing the availability of disposal site. Thus, it is necessary to identify the effects of high temperature on the performance of buffer and allow for the thermal constraint greater than $100^{\circ}C$. In addition, the development of high-performance EBS (Engineered Barrier System) such as composite bentonite buffer mixed with graphite or silica and multi-layered buffer (i.e., highly thermal-conductive layer or insulating layer) should be taken into account to enhance the disposal efficiency in parallel with the development of multilayer repository. This will contribute to increase of reliability and securing the acceptance of the people with regard to a high-level waste disposal.

Isolation and Physicochemical Properties of Rice Starch from Rice Flour using Protease (단백질분해효소에 의한 쌀가루로부터 쌀전분의 분리 및 물리화학적 특성)

  • Kim, ReeJae;Oh, Jiwon;Kim, Hyun-Seok
    • Food Engineering Progress
    • /
    • v.23 no.3
    • /
    • pp.193-199
    • /
    • 2019
  • This study aimed to investigate the impact of protease treatments on the yield of rice starch (RST) from frozen rice flours, and to compare the physicochemical properties of RST by alkaline steeping (control) and enzymatic isolation (E-RST) methods. Although the yield of E-RST, prepared according to conditions designed by the modified 23 complete factorial design, was lower than the control, the opposite trends were observed in its purity. E-RST (RST1, isolated for 8 h at 15℃ with 0.5% protease; RST2, isolated for 24 h at 15℃ with 1.5% protease; RST3, isolated for 24 h at 15℃ with 0.5% protease) with the yields above 50% were selected. Amylose contents did not significantly differ for the control and RST2. Relative to the control, solubilities were higher for all E-RST, but swelling power did not significantly differ for E-RST except for RST1. Although all E-RST revealed higher gelatinization temperatures than the control, the reversed trends were found in the gelatinization enthalpy. The pasting viscosities of all E-RST were lower than those of the control. Consequently, the enzymatic isolation method using protease would be a more time-saving and eco-friendly way of preparing RST than the alkaline steeping method, even though its characteristics are different.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.