Physicochemical Properties and Hot Air-Dried and Spray-Dried Powders Process of Sweet Potato and Steamed Sweet Potato

열풍건조 및 분무건조 공정을 이용한 생 고구마와 찐 고구마 분말제조 및 물리화학적 품질특성

  • Gu, Yul-Ri (Department of Food Science and Technology, Daegu Catholic University) ;
  • Chae, Ho-Yong (Department of Food Science and Technology, Daegu Catholic University) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Daegu Catholic University)
  • 구율리 (대구가톨릭대학교 식품공학전공) ;
  • 채호용 (대구가톨릭대학교 식품공학전공) ;
  • 홍주헌 (대구가톨릭대학교 식품공학전공)
  • Received : 2017.05.25
  • Accepted : 2017.06.01
  • Published : 2017.06.30

Abstract

This study was conducted to examine the physicochemical properties and hot air-dried and spray-dried powders process of sweet potato and steamed sweet potato. The moisture and the total starch contents were 1.66~2.19% and 52.65~57.42%, respectively. The total starch contents increased during process steaming. The water absorption index of the spray-dried powders (0.97 and 2.03) was lower than that of the hot air-dried powders (2.12 and 4.71), and the water solubility index of the spray-dried powders (83.83 and 86.95%) was higher than that of the hot air-dried powders (68.40 and 81.21%). The particle size and outer topology of the spray-dried powders were 46.18 and $65.53{\mu}m$, and its shape was generally globular. In the DSC analysis of this study, the $T_o$ of the spray-dried powders (64.40 and $67.80^{\circ}C$), $T_p$ of the spray-dried powders (74.40 and $78.20^{\circ}C$), and $T_c$ of the spray-dried powders (81.10 and $81.60^{\circ}C$) was higher than that of the hot air-dried powders. The solubility contents of the spray-dried powders (68.21 and 80.73%) was lower than that of the hot air-dried powders, and the swelling power contents of the spray-dried powders (14.79 and 15.35%) was higher than that of the hot air-dried powders. The amylose contents of spray-dried powders (11.67 and 12.51%) was lower than that of the hot air-dried powders. The soluble dietary fiber contents of spray-dried powders (1.34 and 2.02%) was higher than that of the hot air-dried powders.

본 연구에서는 베니하루카 고구마를 식품가공용 소재로의 활용 가능성을 확인하고자 열풍건조 및 분무건조공정을 이용하여 생 고구마 및 찐 고구마 분말을 제조하였고 다양한 물리화학적 특성을 분석하였다. 고구마 분말의 수분함량은 1.66~2.19%이고, 색도는 열풍건조 분말보다 분무건조 분말의 L값이 높게 나타났으며 b값이 낮게 나타났다. 전분함량은 52.65~57.41%로 찌는 과정을 통해 증가하였으며, 열풍건조 분말(52.65 및 53.61%)보다 분무건조 분말(54.44 및 57.41%)의 전분함량이 높게 나타났다. 수분흡수지수 및 수분용해지수는 찌는 과정을 통해 증가하였고 분무건조 분말이 열풍건조 분말에 비해 수분흡수지수는 낮고 수분용해지수는 높게 분석되었다. 분말의 입자크기는 분무건조 분말(46.18 및 $65.53{\mu}m$)이 열풍건조 분말(175.35 및 $620.87{\mu}m$)보다 유의적으로 크기가 작게 나타났으며, 입자표면구조는 열풍건조 분말보다 분무건조 분말의 입자 크기가 균일하고 미세한 분말의 형태를 나타내었다. 분말의 열적 특성에서 호화개시온도, 최대호화온도, 호화종결온도 및 호화엔탈비 값은 열풍건조 분말보다 분무건조 분말이 높게 나타났다. 용해도는 열풍건조 분말보다 분무건조 분말이 낮게 나타났으나, 팽윤력은 열풍건조 분말보다 분무건조 분말이 높게 나타났다. 고구마분말의 amylose 함량은 11.67~19.06%로 열풍건조 분말(19.01 및 19.16%)보다 분무건조 분말(11.67 및 12.51%)이 낮게 나타났으며, 식이섬유 함량은 열풍건조 분말(1.12 및 1.64%)보다 분무건조 분말(1.34 및 2.02%)에서 수용성 식이섬유 함량이 높게 나타났다. 따라서 스팀 처리후 분무건조 공정을 이용하여 제조된 고구마 분말은 가공적성이 향상되었고, 전분 및 수용성 식이섬유 함량이 증가하여 기능성이 증진된 식품가공용 소재로 적용 가능할 것으로 사료된다.

Keywords

References

  1. Oh, H. E. and Hong, J. S.: Quality characteristics of sulgidduk added with fresh sweet potato. Korean J. Food Cookery Sci. 2008, 24, 501-510.
  2. Kim, K. E., Kim, S. S., and Lee, Y. T.: Physicochemical propertics of flours prepared fro, sweet potatoes with different flesh colors. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1476-1480. https://doi.org/10.3746/jkfn.2010.39.10.1476
  3. Abegunde, O. K., Mu, T. H., Chen, J. W., and Deng, F. M.: Physicochemical characterization of sweet potato starches popularly used in chinese starch industry. Food Hydrocolloid. 2013, 33, 169-177. https://doi.org/10.1016/j.foodhyd.2013.03.005
  4. Yang, J. H., Park, H. Y., Kim, Y. S., Choi, I. W., Kim, S. S., and Choi, H. D.: Quality characteristics of vacuum-fried snacks prepared from various sweet potato cultivars. Food Sci. Biotechnol. 2012, 21, 525-530. https://doi.org/10.1007/s10068-012-0067-4
  5. Reddy, N. N. and Sistrunk, W. A.: Effect of cultivar, size, storage, and cooking method on carbohydrates and some nutrients of sweet potatoes. J. Food Sci. 1980, 45, 682-684. https://doi.org/10.1111/j.1365-2621.1980.tb04131.x
  6. Jeong, B. C., Ahn, Y. S., Chung, M. N., Lee, J. S., and Oh, Y. H.: Current status and prospect of quality evaluation in sweetpotato. Korean J. Crop Sci. 2002, 47, 124-134.
  7. Kim, J. M., Park, S. J., Lee, C. S., Ren, C., Kim, S. S., and Shin, M.: Functional properties of different Korean sweet potato varieties. Food Sci. Biotechnol. 2011, 20, 1501-1507. https://doi.org/10.1007/s10068-011-0208-1
  8. Kim, K. E., Kim, S. S., and Lee, Y. T.: Physicochemical properties of flours prepared from sweet potatoes with different flesh colors. J. Korean Soc. Food Sci. Nutr. 2010, 39, 1476-1480. https://doi.org/10.3746/jkfn.2010.39.10.1476
  9. Cheon, S. H. and Eun, J. B.: The physical properties of puffed snacks (ppeongtuigi) added with sweet potato flours. J. Appl. Biol. Chem. 2011, 53, 147-152.
  10. Baek, M. H., Cha, D. S., Park, H. J., and Lim, S. T.: Physicochemical properties of commercial sweet potato starches. Korean J. Food Sci. Technol. 2000, 32, 755-762.
  11. Kim, S. Y. and Ryu, C. H.: Studies on the nutritional components of purple sweet potato (Ipomoea batatas). Korean J. Food Sci. Technol. 1995, 27, 819-825.
  12. Jang, G. Y., Li, M., Lee, S. H., Woo, K. S., Sin, H. M., Kim, H. S., Lee, J. S., and Jeong, H. S.: Optimization of processing conditions and selection of optimum species for sweet potato chips. Korean J. Food Nutr. 2013, 26, 565-572. https://doi.org/10.9799/ksfan.2013.26.3.565
  13. Kim, H. S.: Physicochemical properties of sweet potato starch reclaimed from sweet potato processing sludge. Korean J. Food Sci. Technol. 2013, 45, 747-753. https://doi.org/10.9721/KJFST.2013.45.6.747
  14. Philips, R. D., Chinnan, M. S., Granch, A. L., Miller, J., and Mcwatters, K. H.: Effect of pretreatment on functional and nutritional properties of cowpea meal. J. Food Sci. 1988, 53, 805-809. https://doi.org/10.1111/j.1365-2621.1988.tb08959.x
  15. Woo, K. S., Song, S. B., Ko, J. Y., Kim, Y. B., Kim, W. H., and Jeong, H. S.: Antioxidant properties of adzuki beans, and quality characteristics of sediment according to cultivated methods. Korean J. Food Nutr. 2016, 29, 134-143. https://doi.org/10.9799/ksfan.2016.29.1.134
  16. Williams, P. C., Kuzina, F. D., and Hlynka, I.: A rapid colorimetric method for estimating the amylose cintent of starches and flours. Cereal Chem. 1970, 47, 411-421.
  17. Kang, Y. C., Choi, K. K., Kim, K. H., and Kim, H. K.: Microencapsulation of aster scaber and aster glehni by spray drying. Korean J. Food Preserv. 2002, 9, 212-220.
  18. Lazarides, H. N., Katsanidis, E., and Nickolaidis, A.: Mass transfer during osmotic pre-concentration aiming at minimal solid uptake. J. Food Eng. 1955, 25, 151-166.
  19. Moon, J. H., Kim, R. S., Choi, H. D., and Kim, Y. S.: Nutrient composition and physicochemical properties of Korean taro flours according to cultivars. Korean J. Food Sci. Technol. 2010, 42, 613-619.
  20. Lim, J. H., Kim, J. H., Seo, Y. H., and Moon, K. D.: Effect of low-temperature blanching on physical properties of chestnut powder. Korean J. Food Sci. Technol. 1999, 31, 1216-1220.
  21. Kim, D. M. and Kwak, H. S.: Nanofood materials and approachable development of nanofunctional dairy products. J. Korean Dairy Technol. Sci. 2004, 22, 1-12.
  22. Holdsworth, S. D.: Dehydration of food products. J. Food Technol. 1971, 6, 331-336.
  23. Jung, S. H., Shin, G. J., and Choi, C. U.: Comparison of physicochemical properties of corn, sweet potato, potato, wheat and mungbean starches. Korean J. Food Sci. Technol. 1991, 23, 272-275.
  24. Lee, K. Y. and Lee, S. R.: A study on the systematic analysis of lipids from sweet potatoes. Korean J. Food Sci. Technol. 1972, 4, 309-316.
  25. Kuge, T. and Kitamura, S.: Annealing of starch granules; Warm water treatment and heat-moisture treatment. J. Japan Soc. Starch. Sci. 1985, 32, 65-83. https://doi.org/10.5458/jag1972.32.65
  26. Demeke, T., Hucl, P., Abdel-Aal, E. S. M., Baga, M., and Chibbar, R. N.: Biochemical characterization of the wheat waxy a protein and its effect on starch properties. Cereal Chem. 1999, 76, 694-698. https://doi.org/10.1094/CCHEM.1999.76.5.694
  27. Hoover, R. and Vasanthan, T.: The flow properties of native, heat-moisture treated and annealed starches from wheat, oat, potato and lentil. J. Food Biochem. 1994, 18, 67-82. https://doi.org/10.1111/j.1745-4514.1994.tb00490.x
  28. Jane, J., Chen, Y. Y., Lee, L. F., McPherson, A. E., Wong, K. S., Radosavljevic, M., and Kasemsuwan, T.: Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999, 76, 629-637. https://doi.org/10.1094/CCHEM.1999.76.5.629
  29. Kaur, M., Sandhu, K. S., and Lim, S. T.: Microstructure, physicochemical properties and in vitro digestibility of starches from different Indian lentil (Lens culinaris) cultivars. Carbohyd Polym. 2010, 79, 349-355. https://doi.org/10.1016/j.carbpol.2009.08.017
  30. Lee, Y. T.: Effect of heat treatments on in vitro starch hydrolysis of selected grains. J. Korean Soc. Food Sci. Nutr. 2006, 35, 1102-1105. https://doi.org/10.3746/jkfn.2006.35.8.1102
  31. Kang, H. J., Seo, H. S., and Hwang, I. K.: Comparison of gelatinization and retrogradation characteristics among endosperm mutant rices derived from llpumbyeo. Korean J. Food Sci. Technol. 2004, 36, 879-884.
  32. Lorenz, K.: Physicochemical characteristics and functional properties of starch from a high ${\beta}$-glucan waxy barley. Starch/Starke. 1995, 47, 14-18. https://doi.org/10.1002/star.19950470105
  33. Lee, H. I., Lee, H. G., and Bae, I. Y.: Impact of dietary fibers from various source in wheat flour gel model: Aspect of suitability of processing and in vitro starch digestibility. Food Eng. Prog. 2013, 17, 297-304. https://doi.org/10.13050/foodengprog.2013.17.4.297
  34. Lee, A. R. and Kim, S. K.: Gelatinization and gelling properties of legume starches. J. Korean Soc. Food Nutr. 1992, 21, 738-747.
  35. Leach, H. W., McCowen, L. D., and Schoch, T. J.: Structure of the starch granule. 1. Swelling and solubility patterns of various starche. Cereal Chem. 1959, 36, 534.
  36. Gerard, C., Narron, C., Colonna, P., and Planchot, V.: Amylose determination in genetically modified starches. Carbohyd. Polym. 2001, 44, 19-27. https://doi.org/10.1016/S0144-8617(00)00194-6
  37. Lindeboom, N., Chang, P. R., and Tyler, R. T.: Analytical, biochemical and physicochemical aspects of sarch granule size, with emphasis on small granule starches: A review. Srarch/Starke. 2004, 56, 89-99. https://doi.org/10.1002/star.200300218
  38. Reddy, K. R., Ali, S. Z., and Bhattacharya, K. B.: The fine structure of rice starch amylopectin and its relation to the texture of cooked rice. Carbohyd. Polym. 1993, 22, 267-275. https://doi.org/10.1016/0144-8617(93)90130-V
  39. Chm, H. L., Haack, V. S., Janecky, C. W., Vollendorf, N. W., and Marlett, J. A.: Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am. J. Clin. Nutr. 1988, 68, 711-71.
  40. Shon, H. K., Kim, Y. H., and Lee, K. A.: Quality characteristics of kongnamulguk with commercial soy sprouts. Korean J. Human Ecol. 2009, 18, 1147-1153. https://doi.org/10.5934/KJHE.2009.18.5.1147