인식 주체는 자신의 경험을 바탕으로 주어진 대상에 구조를 부여하여 대상을 구조로 인식하려고 한다. 주어진 문제 맥락 속에서 주체가 대상에 부여할 수 있는 구조는 횡적, 종적으로 다양하다. 구조의 횡적 다양성의 측면에서, 한 대상 속에서 다양한 구조를 발견하는 데 초점을 맞춘 문제해결 활동은 다양한 전략 사용에 중점을 둔 문제해결 교육의 보완이 될 수 있다 또, 도형 패턴 과제에서 일반식의 발견은 문제해결의 종착점이 아닌 새로운 구조 탐구의 시발점으로 여겨져야 한다. 구조의 종적 다양성의 측면에서, 교사는 학생이 보는 구조와 교사가 보는 구조가 다를 가능성에 유의하면서, 구조의 종적 다양성에 기초하여 아동이 진보의 경험을 할 수 있도록 지도하는 방안을 모색할 필요가 있다.
이 논문에서는 계산기에 대하여 복잡한 계산 수행 뿐 아니라 수학적 개념, 원리, 법칙을 탐구할 수 있는 인지적 학습 도구로서의 가능성을 탐구하였다. 계산기가 인지적 공학 도구이며 교수-학습 도구임을 밝혔으며, 국내외의 수학교육과정에서의 계산기 활용 실태를 살펴보았다. 실제적으로 인지적 학습 도구로서의 계산기의 역할을 관찰하기 위하여, 초등학교 수학에서 계산기 활동 자료를 개발하고 이를 3학년, 5학년 학생들에게 적용한 실험 활동을 실시하였다. 활동 결과, 사칙계산기가 지필환경에서는 가능하지 않은 패턴 인식을 통한 귀납, 추론, 원리 탐구를 용이하게 한다는 것을 확인하였다. 이에 비추어 지필환경에서 이루어지는 기존 교과서의 제시 방식에 대안이 될 수 있는 발견적 방식을 대비하여 논의하였다.
주기적인 나노트랜치 패턴이 있는 기판 위에 놓인 CVD 그래핀의 전도특성을 측정하였다. 나노트랜치에 대해 평행한 방향과 수직한 방향 사이에 전도특성의 큰 비등방성을 발견하였다. 전기 전도의 방향이 나노트랜치에 수직한 경우, 약한 한곳모임의 특성에 있어서도 큰 차이점이 발견되었는데, 이는 퍼텐셜 변조에 의해 생겨나는 전하밀도의 비균일성에 의해 생겨나는 것으로 해석된다.
플레이어의 게임공간에 대한 상호작용이 타 장르에 비해 직접적인 FPS게임은 특정 테마를 바탕으로 공간에서의 유리한 지점 확보 및 적의 제거가 주된 플레이이다. 본 논문은 근미래전테마 위주의 Hullett과 Whitehead 연구의 10가지 패턴을 기준으로 과거전, 현대전, 근미래전 3가지 테마에 대한 9종의 FPS게임 디자인패턴을 분석하였다. 그 결과, 10가지의 패턴 외에 주류 패턴으로써 '엄폐물 요소'의 중요한 역할을 발견하였고 '엄폐물 요소'의 패턴 속성을 분석하여 레벨디자인을 위한 효율적인 엄폐물 패턴의 활용방법을 제시하였다. 이러한 결과는 테마에 따른 FPS게임의 레벨디자인을 위한 실증적인 가이드라인으로 활용 될 수 있다.
데이터 마이닝은 대용량의 데이터에 숨겨진 의미있고 유용한 패턴과 상관관계를 추출하여 의사결정에 활용하는 작업이다. 그 중에서도 고객 트랜잭션의 데이터베이스에서 아이템(item) 사이에 존재하는 연관규칙을 찾는 것은 중요한 일이 되었다. Apriori 알고리즘 이후 연관규칙을 찾기 위해 대용량의 데이터베이스로부터 압축된 의미있는 정보를 저장하기 위한 데이터 구조와 알고리즘들이 많이 제안되어 왔다. 연관규칙을 발견하기 위한 기존의 연구들은 모든 규칙을 찾아내지만, 사람이 분석하기에 너무 많은 규칙이 생성되기 때문에 규칙을 분석하기 위한 일 또한 많은 과정을 거쳐야 한다. 본 논문에서는 빈발 패턴 네트워크(Frequent Pattern Network)라 부르는 자료 구조를 제안하고 이를 활용하였다. 네트워크는 정점과 간선으로 구성되며 정점은 아이템을 표현하고, 간선은 두 아이템 집합을 표현한다. 아이템의 빈도수를 이용하여 빈발 패턴 네트워크를 구성하고, 아이템 사이의 유사도를 측정한다. 그리고 클러스터 내의 아이템과는 유사도가 높고, 다른 클러스터의 아이템과는 유사도가 낮도록 클러스터를 생성한다. 클러스터를 이용해 연관규칙을 생성하고 실험을 통해 Apriori와 FP Growth 알고리즘과의 성능을 비교를 하였다. 그 결과 빈발 패턴 네트워크에서 신뢰도 유사도를 이용하는 것이 클러스터의 정확성을 높여줌을 볼 수 있었다. 그리고 전통적인 방법과 비교를 통해 빈발 패턴 네트워크를 이용하는 것이 최소지지도에 유연성을 가짐을 알 수 있었다.
데이터마이닝 기법들은 의미 있고 유용한 정보를 효율적으로 찾기 위해서 제안되어 왔다. 특별히, 빅 데이터 환경에서 데이터가 여러 응용들에서 축적되어짐에 따라, 관련된 패턴 마이닝 방법들이 제안되고 있다. 최근에는 파일이나 데이터베이스에 이미 저장되어 있는 정적 데이터를 분석하는 대신에 점진적으로 생성되는 동적 데이터를 마이닝 하는 것이 더 흥미 있는 연구영역으로 고려되고 있는데 동적데이터는 단지 한번만 스캔하여 읽을 수 있기 때문이다. 이와 같은 이유로, 어떻게 동적 데이터를 효율적으로 마이닝 하는지에 대한 연구들이 진행되고 있다. 더불어서, 마이닝 결과로 거대한 수의 패턴들이 생성되기 때문에, 맥시멀 패턴 마이닝과 같은 대표 패턴들을 마이닝하는 접근방법들도 제안되고 있다. 또 다른 이슈로, 실세계에서 더 의미있는 패턴들을 발견하기 위해, 가중화 패턴 마이닝에서 아이템들의 가중치가 사용되고 있다. 실제 상황에서 아이템의 이익이나 가격 등이 가중치로 사용 될 수 있다. 본 논문에서는 점진적으로 생성되는 데이터에 대한 가중화 맥시멀 패턴 마이닝, 맥시멀 대표 패턴 마이닝 그리고 점진적 패턴 마이닝 기법들에 대해 분석한다. 그리고 가중화 대표 패턴 마이닝을 적용하여서 유아들에게서 필요로 하는 물품 패턴들을 분석하기 위한 응용 시나리오를 제시한다. 추가로, 분석한 마이닝 알고리즘들에 대한 성능 평가를 수행한다. 결과적으로, 점진적 가중화 맥시멀 패턴 마이닝 기법이 점진적 가중화 패턴 마이닝과 가중화 패턴 마이닝 기법보다 좋은 성능을 가짐을 보인다.
본 연구는 컨테이너선의 연료 소비 패턴의 발견을 위해 운항데이터 분석의 통계적 절차를 제안한다. 우리는 현 시점의 연료 소비를 발견하기 위해 연료 소비에 영향을 미치는 변수들을 파악하는 동시에 예측 모델을 개발 및 적용하는 것을 목적으로 한다. 선박의 데이터는 크게 운항데이터와 기기데이터로 분류할 수 있으며, 운항데이터는 항로, 항해 정보, 대수속도, 대지속도, 바람과 같은 외력에 대한 정보 등이 있고, 기기데이터는 엔진출력, RPM, 연료 소모량, 기기들의 온도 및 압력 등이 있다. 본 연구에서, 우리는 선박에 미치는 외력의 영향을 Beaufort Scale (BFS)을 기준으로 구분한 후에 PLS 회귀분석을 통한 예측 모델을 개발하였다.
본 논문에서는 디스크 입출력 시스템의 성능을 향상시키기 위한 효율적인 버퍼 관리 기법을 제시한다. 본 기법은 사용자 수준의 정보 없이 블록의 속성과 미래 참조 거리간의 관계를 기반으로 각 응용의 블록 참조 패턴을 자동으로 발견하고, 발견된 참조 패턴에 적합한 최적 블록 교체 기법을 적용한다. 또한, 응용이 참조하는 블록이 버퍼 캐쉬에 없어 새로운 버퍼 블록이 요구될 때, 응용별로 블록 참조 패턴에 따라 버퍼 예상 적중률을 분석하여 이를 기반으로 전체 버퍼 캐쉬의 적중률이 극대화되도록 해 주는 버퍼 할당 기법을 제안한다. 이러한 모든 과정은 시스템 수준에서 자동으로 그리고 온라인으로 수행된다. 제시한 기법의 성능을 평가하기 위해 블록 참조 트레이스를 이용해 모의 실험을 수행하였다. 실험 결과 제시한 기법은 적은 오버헤드로 기존의 블록 교체 기법들보다 캐쉬 블록의 적중률을 크게 향상시켜 주었다.
데이터 마이닝(Data Mining)은 환경으로부터 수집된 데이터에서 패턴을 추출하고 의미 있는 정보를 발견하기 위하여 주로 사용된다. 하지만, 기존의 방법은 데이터의 수집이 완료된 상태에서 분석하는 것을 기반으로 하고 있으며, 시간의 흐름에 따른 패턴의 변화를 반영하기 어렵다. 본 논문은 연속성(Continuity data), 대량성(Large scale) 그리고 패턴의 가변성(Changed pattern)과 같은 특성을 가지는 스트림 데이터(Stream Data)의 분석을 위한 스트리밍 의사결정 나무(Streaming Decision Tree : SDT) 방법을 소개한다. SDT는 연속적으로 발생하는 데이터를 블록으로 정의하고, 각 블록은 의사결정나무 학습 방법을 이용하여 규칙을 추출한다. 추출된 규칙은 발생 시간, 빈도 그리고 모순 등을 고려하여 결합하였다. 실험에서는 시계열 데이터를 이용하여 분석하였고, 적절한 결과를 확인하였다.
단백질은 서열의 disorder 구역이 생물학적 반응을 일으켜 order로 변하는 과정에서 그 기능을 하게 되므로 서열 데이터에서 disorder 구역과 order 구역을 분리하는 것은 단백질의 3차 구조 및 특성을 예측하는데 반드시 필요하다. 따라서 이 논문에서는 효율적인 disorder와 order 구역 분류를 위해서 단백질의 특정 특징에 치우치지 않는 분류 결과를 얻으면서, 분류 속도를 향상 시킬 수 있도록 서열 데이터를 이용한 분류/예측 기법을 제안한다. 출현패턴 기반의 EPs-TFP 기법은 중복 출현패턴이 제거된 필수 출현패턴만을 이용하는 분류/예측 기법이다. 이 분류 기법은 disorder 구역의 서열 출현패턴들을 발견하며, 이러한 서열 출현패턴은 disorder 구역에서는 빈발하지만 order 구역에서는 상대적으로 빈발하지 않는 패턴들이다. 또한 제안 알고리즘의 성능 향상을 위해서 기존의 P-tree, T-tree 개념의 TFP 기법을 확장하여 분류/예측 기법으로 적용하였다. EPs-TFP 기법의 성능평가를 위해서 Disprot 4.9와 CASP 7 데이터를 활용하였고, disorder/order 구역을 분류한 결과, 민감도 73.6, 특이도 69.5, 정확도 74.2를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.