Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.5.279

Anisotropic Electronic Transport of Graphene on a Nano-Patterned Substrate  

Khalil, H.M.W. (Department of Physics and Graphene Research Institute, Sejong University)
Kelekci, O. (Department of Physics and Graphene Research Institute, Sejong University)
Noh, H. (Department of Physics and Graphene Research Institute, Sejong University)
Xie, Y.H. (Department of Materials Science and Engineering, University of California)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.5, 2012 , pp. 279-285 More about this Journal
Abstract
We report on the measurements of electronic transport properties of CVD graphene placed on a pre-patterned substrate with periodic nano trenches. A strong anisotropy has been observed between the transport parallel and perpendicular to the trenches. Characteristically different weak localization corrections have been also observed when the transport was perpendicular to the trench, which is interpreted as due to a density inhomogeneity generated by the potential modulations.
Keywords
Graphene; Nano trench; Anisotropy; Weak localization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. McCann, K. Kechedzhi, V. I. Fal'ko, H. Suzuura, T. Ando, and B. I. Altshuler, Phys. Rev. Lett. 97, 146805 (2006).   DOI   ScienceOn
2 M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature Phys. 2, 620 (2006).   DOI
3 S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).   DOI
4 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).   DOI
5 Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, Appl. Phys. Lett. 93, 113103 (2008).   DOI
6 Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. I. Song, B. H. Lee, and J. H. Ahn, Nano Lett. 10, 490 (2010).   DOI
7 H. Cao, Q. Yu, L. A. Jauregui, J. Tian, W. Wu, Z. Liu, R. Jalilian, D. K. Benjamin, Z. Jiang, J. Bao, S. S. Pei, and Y. P. Chen, Appl. Phys. Lett. 96, 122106 (2010).   DOI
8 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid. State. Commun. 146, 351 (2008).   DOI
9 A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452 (2010).   DOI
10 X. Li, E. A. Barry, J. M. Zavada, M. Buongiorno, and K. W. Kim, Appl. Phys. Lett. 97, 232105 (2010).   DOI
11 A. Betti, G. Fiori, and G. Iannaccone, Appl. Phys. Lett. 98, 212111 (2011).   DOI
12 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotech. 5, 722 (2010).   DOI
13 J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nature Nanotech. 5, 190 (2010).   DOI
14 R. V. Gorbachev, F. V. Tikhonenko, A. S. Mayorov, D. W. Horsell, and A. K. Savchenko, Phys. Rev. Lett. 98, 176805 (2007).   DOI
15 F. V. Tikhonenko, D. W. Horsell, R. V. Gorbachev, and A. K. Savchenko, Phys. Rev. Lett. 100, 056802 (2008).   DOI
16 F. V. Tikhonenko, A. A. Kozikov, A. K. Savchenko, and R. V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2009).   DOI
17 A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).   DOI   ScienceOn