이 연구는 한국어 명사구를 말뭉치로부터 추출하는 방법의 하나로 의존관계 패턴에 기반한 접근방법을 제안하는 것을 목적으로 한다. 이 방법론을 활용한 경우에 명사구 추출의 정확성을 높일 수 있다. 이 논문에서는 한국어 법령 의존 말뭉치를 구축하는 단계부터 상위 명사구 목록을 생성하기 까지 거치는 5단계에 대해 상세하게 논의하는 한편, 의존구조 검색시스템을 통해 의존관계 패턴을 추출하는 절차에 대해 기술하고 이 작업을 수행하기 위한 검색식들의 특성들에 대해 검토한다.
패턴 매칭 알고리즘은 컴퓨터 네트워크, 유비쿼터스 네트워크, 그리고 센서 네트워크 등을 위한 보안 프로그램에 주로 사용 된다. IT 기술의 발전과 함께 정보의 디지털화가 가속화되면서 네트워크를 통해 전달되는 데이터양이 급증하고 있다. 이에 따라 패턴 매칭 연산의 복잡도도 폭발적으로 증가하고 있다. 따라서 더 많은 패턴을 보다 빠르게 검색할 수 있는 고성능 알고리즘의 개발이 끊임없이 요구되고 있다. 본 논문은 서픽스 트리 기반 패턴 매칭 알고리즘을 새롭게 제안하여 대용량 패턴 매칭 연산의 성능을 높였다. 서픽스 트리는 사전에 정의된 복수 패턴들의 서픽스를 기반으로 생성된다. 이 트리에 쉬프트 노드 개념을 추가하여 기존 패턴 매칭 연산들 중 불필요한 연산의 수행 횟수를 줄였다. 결과적으로 제안하는 구조를 통해 기존 알고리즘 대비 24% 이상의 성능 향상을 이루었다.
인공지능은 우리의 삶에 점차 많은 부분을 차지하고 있으며, 발전하는 속도도 빨라지고 있다. 학생들의 컴퓨팅 사고력을 인공지능이 학습하는 방법대로 길러주는 것을 ACT(AI based Computational Thinking)라고 한다. ACT 중 패턴 인식은 문제를 효율적으로 해결하기 위해 필수적인 요소이다. 패턴 분석은 패턴 인식 과정의 일부로 볼 수 있다. 실제로 넷플릭스의 개인 맞춤 영화 추천, 반복된 증상을 분석하여 코로나 바이러스로 명명하는 것 등이 모두 패턴 분석의 결과이다. 패턴인식을 포함한 ACT의 중요성이 부각되는 것에 반면, 유치원과 초등학교 저학년을 대상으로 한 소프트웨어 교육은 국외에 비해 많이 부족한 실정이다. 따라서 본 연구에서는 유치원 학생들을 대상으로 하여 패턴 분석을 통한 인공지능 기반 컴퓨팅 사고력 계발을 위한 교재를 설계하고 개발하였다.
통신 기술이 발달하고, 네트워크 환경 또한 다양해짐에 따라 통신 사용자들에 대한 사이버 위협 또한 다양해졌다. 패턴인식 기술과 기계학습에 기반한 침입탐지 기술은 새롭게 보고되는 수많은 사이버 공격들에 대응하기 위해 등장하였다. 기계학습 기반의 IDS는 낮은 오탐률과 높은 효율성을 요구하며, 이러한 특징은 데이터셋을 구성하는 방법론에 큰 영향을 받는다. 본 논문에서는 패턴인식 기반 트래픽 분석을 수행하기 위한 데이터셋을 구성할 때 고려해야할 주안점에 대해 논하며, 현실의 사이버 위협 상황을 잘 반영할 수 있는 데이터셋을 도출하는 방법을 모색한다.
인터넷이 폭 넓게 보급되어 개인의 의견을 개진할 기회가 확대됨에 따라 정치, 경제 등의 사안이나 제품 기업의 이미지, 공인에 대한 긍정.부정의 글을 개진할 수 있게 되었다. 이러한 현상에 따라 기업, 제품, 혹은 공공의 분야에서 일반 개인들이 어떻게 생각하는가에 대한 분석 및 자료수집의 필요성이 높아지고 있다. 감성용어 문서분류시스템은 문서의 내용 중 감성기반의 용어들에 기반하여 이에 대한 패턴을 정의하고 이에 대응하는 범주에 문서를 자동으로 할당하는 작업으로써 효율적인 정보 관리 및 검색을 가능하게 한다. 하지만 자동문서 분류를 하기 위해서는 방대한 양의 데이터를 수집 보관하기 위한 분산 환경이 반드시 필요하다. 본 논문에서는 감성기반 문서분류 시스템을 위한 감성용어 추출 및 긍정, 부정의 패턴을 검색해 자동 문서분류를 위해 RTI(Run Time Infrastructure)를 통한 분산 시스템 환경으로 구성하였다.
본 논문에서는 다중 출력을 가지는 퍼지 집합 기반 퍼지뉴럴네크워크(Fuzzy-Nueral Network; FNN)를 설계한다. 퍼지 집한 기반 퍼지뉴럴네트워크는 각 입력 변수에 따른 개별적인 입력 공간을 공간 분할함으로서 네트워크를 구성한다. 규칙의 전반부는 앞서 언급한 개별적인 입력 공간을 분할하여 표현하고, 규칙의 후반부는 다항식으로서 표현되며 오류역전파 알고리즘을 이용하여 연결가중치인 후반부 다항식의 계수를 학습한다. 또한, 각 입력에 대한 전반부 멤버쉽 함수의 정점과 학습률 및 모멤텀 계수를 유전자 알고리즘을 이용하여 최적 동조한다. 따라서 유전자 알고리즘을 이용하여 퍼지뉴럴네트워크를 최적 설계한다. 제안된 네트워크는 초고압 XLPE 케이블 절연접속함의 모의결함에 대해 부분방전 신호를 패턴인식한다. 부분방전 신호는 PRPDA 방법을 통해 200개의 입력 벡터와 4개의 출력 벡터를 가지며, 보이드 방전, 코로나 방전, 표면 방전, 노이즈의 4개 클래스를 분류한다.
최근 급증하는 교통 혼잡으로 인해 시간적/물질적 손실이 크게 발생하고 있다. 이러한 교통난 해소는 시설투자만으로는 근본적인 해결책이 될 수 없다는 판단 하에 지난 수년간 보다 정확한 교통량을 예측하기 위해 시계열 기반의 다양한 교통량 예측 모델들이 개발 되어 왔다. 그러나 시계열 기반의 모델들은 회귀분석을 통해 과거 교통량을 분석하고 과거의 교통패턴이 미래에도 지속적으로 연장된다는 가정 하에 연구되었기 때문에 실시간으로 급변하는 불규칙한 교통 패턴에 대한 예측의 신뢰성을 떨어트린다. 또한 시계열 기반의 예측 기법은 어떠한 회귀분석 모델을 사용하는지에 따라 성능의 차이가 많이 나타나기 때문에 회귀분석 모델 선택이 중요하다. 이러한 제약을 극복하기 위해 본 논문에서는 은닉 마르코프 모델(Hidden Markov model)을 이용해 동적인 교통 패턴에 따라 현재 상황에 맞는 회귀분석 모델을 선택하는 신뢰도 높은 교통량 예측 시스템을 제안한다.
경성 실시간 시스템(Hard Real-Time System)어서는 주기 태스크들의 엄격한 마감시간(Deadline) 보장이 시스템의 성능을 좌우한다. 본 논문에서는 CPU의 이용률(Utilization)이 높아 비율단조 정책으로는 마감시간을 보장 할 수 없는 주기 태스크들을 위해 확장된 스케줄 가능성 검사를 통해 수행할 태스크들의 공통 주기(L.C.M : Least Common Multiple)내에서 EDF(Earliest-Deadline First) 정책을 기반으로 마감시간 보장 수행패턴(Feasible Pattern)을 찾고, 이를 참조하여 우선순위를 고려하지 않고 태스크들을 강제 수행할 수 있게 하는 비율단조 기반의 스케쥴링 기법을 제안한다. EDF를 기반으로 생성된 패턴은 EDF 정책의 특성에 따라 CPU의 이용률을 100% 까지 가능하게 하며 패턴을 참조하여 강제 수행함으로써 EDF 정책이 갖는 실행시간 스케쥴링 오버헤드를 없앨 수 있다.
메모리 기반 추론 기법은 분류시 입력 패턴과 저장된 패턴들 사이의 거리를 이용하는 교사 학습 기법으로써, 거리 기반 학습 알고리즘이라고도 한다. 메모리 기반 추론은 k_NN 분류기에 기반한 것으로, 학습은 추가 처리 없이 단순히 학습 패턴들을 메모리에 저장함으로써 수행된다. 본 논문에서는 기존의 k-NN 분류기보다 효율적인 분류가 가능하고, 점진적 학습 기능을 갖는 새로운 알고리즘을 제안한다. 또한 제안된 기법은 노이즈에 민감하지 않으며, 효율적인 메모리 사용을 보장한다.
최근에 객체지향 소프트웨어를 설계하거나 구현방법으로 EJB 기반의 소프트웨어 개발이 많이 이용되고 있다. 일반적으로 EJB 기반 어플리케이션에서는 데이터베이스를 이용한 영속적인 데이터를 사용하는 경우가 대부분이다. 본 논문에서는 서버 측 작성 프로그램 중 엔티티빈 클래스에서 담당하는 데이터베이스 엑세스에 관련된 부분을 J2EE의 DAO 패턴을 이용하여 클래스를 각각 분리하였다. 이는 기존의 패턴 방법과는 큰 차이는 없으나, 동일 패턴내의 공통의 클래스들을 합성이 가능하도록 설계하였다. 그리고 생성된 각각의 DBMS 클래스들은 다른 엔티티빈 클래스에서도 사용이 가능하게 할 뿐만 아니라 여러 DBMS 환경에서도 Data Source를 추가적인 프로그램의 변경이나 작성 없이 연동이 가능하도록 하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.