• Title/Summary/Keyword: 패스워드

Search Result 652, Processing Time 0.025 seconds

Weaknesses of the new design of wearable token system proposed by Sun et al. (Sun 등이 제안한 착용 가능한 토큰 시스템의 취약점 분석에 관한 연구)

  • Kim, Jung-Yoon;Choi, Hyoung-Kee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.81-88
    • /
    • 2010
  • Sun et al. proposed a new design of wearable token system for security of mobile devices, such as a notebook and PDA. In this paper, we show that Sun et al.'s system is vulnerable to off-line password guessing attack and man in the middle attack based on known plain-text attack. We propose an improved scheme which overcomes the weaknesses of Sun et al.'s system. The proposed protocol requires to perform one modular multiplication in the wearable token, which has low computation ability, and modular exponentiation in the mobile devices, which have sufficient computing resources. Our protocol has no security problem, which threatens Sun's system, and known vulnerabilities. That is, the proposed protocol overcomes the security problems of Sun's system with minimal overheads.

Robust Fuzzy Fingerprint Vault System against Correlation Attack (상관관계 공격에 강인한 지문퍼지볼트 시스템)

  • Moon, Dae-Sung;Chae, Seung-Hoon;Chung, Yong-Wha;Kim, Sung-Young;Kim, Jeong-Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.13-25
    • /
    • 2011
  • Biometric-based authentication can provide strong security guarantee about the identity of users. However, security of biometric data is particularly important as the compromise of the data will be permanent. The fuzzy fingerprint vault system is one of the most popular solutions for protecting the fingerprint template stored in the database. Recently, however, this system is very susceptible to a correlation attack that finds the real minutiae using multiple fingerprint vaults enrolled for different applications. To solve this problem, we propose a robust fuzzy fingerprint vault system against the correlation attack. In this paper, we add chaff minutiae based on the relative information of minutiae such as direction, coordinate instead of adding randomly. Also, our proposed approach allow to add multiple chaff minutiae within tolerance box for enhanced security level. Experimental results show that the proposed approach can protect the correlation attack and achieve enhanced verification accuracy.

Forensic Analysis of Element Instant Messenger Artifacts (포렌식 관점에서의 Element 인스턴트 메신저 아티팩트 분석)

  • Cho, Jae-min;Byun, Hyeon-su;Yun, Hui-seo;Seo, Seung-hee;Lee, Chang-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.6
    • /
    • pp.1113-1120
    • /
    • 2022
  • Recently, the investigation has been difficult due to the emergence of messengers that encrypt and store data for the purpose of protecting personal information and provide services such as end-to-end encryption with a focus on security. Accordingly, the number of crime cases using security messengers is increasing, but research on data decoding for security messengers is needed. Element security messengers provide end-to-end encryption functions so that only conversation participants can check conversation history, but research on decoding them is insufficient. Therefore, in this paper, we analyze the instant messenger Element, which provides end-to-end encryption, and propose a plaintext verification of the history of encrypted secure chat rooms using decryption keys stored in the Windows Credential Manager service without user passwords. In addition, we summarize the results of analyzing significant general and secure chat-related artifacts from a digital forensics investigation perspective.

Analysis and Improved Solution of Hussian et al.'s Authentication Protocol for Digital Rights Management

  • Mi-Og Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.67-74
    • /
    • 2023
  • In this paper, we analyze the authentication protocol for DRM proposed by Hussain et al. in 2022, and present an improved solution. Hussain et al. argued that their authentication protocol guarantees man-in-the-middle attack, replay attacks, and mutual authentication. However, as a result of analyzing Hussain et al.'s authentication protocol in this paper, Hussain et al.'s authentication protocol still has an insider attack problem, a problem with Yu et al.'s authentication protocol that they pointed out. For this reason, when an inside attacker acquires information on a mobile device, a user impersonation attack was also possible. In addition, there were problems with the user's lack of ID format verification and the problem of the secret key mismatch of the digital contents between the server and the user. Therefore, this paper proposes an improved solution to solve these problems. As a result of analysis in this paper, the improved solution is safe from various attacks such as smart card attack, insider attack, and password guessing attack and can safely authenticate users of DRM.

ZigBee Authentication Protocol with Enhanced User Convenience and Safety (사용자 편의성 및 안전성이 강화된 ZigBee 인증 프로토콜)

  • Ho-jei Yu;Chan-hee Kim;Sung-sik Im;Soo-hyun Oh
    • Convergence Security Journal
    • /
    • v.22 no.1
    • /
    • pp.81-92
    • /
    • 2022
  • The rapidly growing IoT market is expanding not only in general households but also in smart homes and smart cities. Among the major protocols used in IoT, ZigBee accounts for more than 90% of the smart home's door lock market and is mainly used in miniaturized sensor devices, so the safety of the protocol is very important. However, the device using Zig Bee is not satisfied with the omnidirectional safety because it uses a fixed key during the authentication process that connects to the network, and it has not been resolved in the recently developed ZigBee 3.0. This paper proposes a design method that provides omnidirectional safety to the ZigBee authentication protocol and can be quickly applied to existing protocols. The proposed improved ZigBee authentication protocol analyzed and applied the recently developed OWE protocol to apply ECDH, which has low computational volume and provides omnidirectional safety in IoT. Based on this, it provides the safety of the ZigBee authentication protocol, and it is expected that it will be able to provide user convenience as it does not require a separate certificate or password input.

User Authentication Protocol preserving Enhanced Anonymity and Untraceability for TMIS

  • Mi-Og Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.93-101
    • /
    • 2023
  • In this paper, as a result of analyzing the TMIS authentication protocol using ECC and biometric information proposed by Chen-Chen in 2023, there were security problems such as user impersonation attack, man-in-the-middle attack, and user anonymity. Therefore, this paper proposes an improved authentication protocol that provides user anonymity to solve these problems. As a result of analyzing the security of the protocol proposed in this paper, it was analyzed to be secure for various attacks such as offline password guessing attack, user impersonation attack, smart-card loss attack, insider attack, perfect forward attack. It has also been shown to provided user privacy by guaranteeing user anonymity and untraceability, which must be guaranteed in TMIS. In addition, there was no significant increase in computational complexity, so the efficiency of execution time was achieved. Therefore, the proposed protocol in this paper is a suitable user authentication protocol for TMIS.

Problem Analysis and Enhancement of 'An Improved of Enhancements of a User Authentication Scheme'

  • Mi-Og Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.53-60
    • /
    • 2024
  • In this paper, we analyze the authentication scheme of Hwang et al. proposed in 2023 and propose a new authentication scheme that improves its problems. Hwang et al. claimed that their authentication scheme was practical and secure, but as a result of analysis in this paper, it is possible to attack the password/ID guessing attack and session key disclosure attack due to insider attack and stolen smart card attack. In addition, Hwang et al.'s authentication scheme, which provides user anonymity, does not provide user untraceability due to its unstable design. The proposed authentication scheme, which improves these problems, not only provides user untraceability, but also is secure for stolen smart card attack, insider attack, session key disclosure attack, and replay attack. In addition, except for one fuzzy extraction operation, it shows the same complexity or very similar one as related authentication schemes. Therefore, the proposed authentication scheme can be said to be an authentication scheme with safety and practicality.

Low-Cost Elliptic Curve Cryptography Processor Based On Multi-Segment Multiplication (멀티 세그먼트 곱셈 기반 저비용 타원곡선 암호 프로세서)

  • LEE Dong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.15-26
    • /
    • 2005
  • In this paper, we propose an efficient $GF(2^m)$ multi-segment multiplier architecture and study its application to elliptic curve cryptography processors. The multi-segment based ECC datapath has a very small combinational multiplier to compute partial products, most of its internal data buses are word-sized, and it has only a single m bit multiplexer and a single m bit register. Hence, the resource requirements of the proposed ECC datapath can be minimized as the segment number increases and word-size is decreased. Hence, as compared to the ECC processor based on digit-serial multiplication, the proposed ECC datapath is more efficient in resource usage. The resource requirement of ECC Processor implementation depends not only on the number of basic hardware components but also on the complexity of interconnection among them. To show the realistic area efficiency of proposed ECC processors, we implemented both the ECC processors based on the proposed multi-segment multiplication and digit serial multiplication and compared their FPGA resource usages. The experimental results show that the Proposed multi-segment multiplication method allows to implement ECC coprocessors, requiring about half of FPGA resources as compared to digit serial multiplication.

Large Vocabulary Continuous Speech Recognition Based on Language Model Network (언어 모델 네트워크에 기반한 대어휘 연속 음성 인식)

  • 안동훈;정민화
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.543-551
    • /
    • 2002
  • In this paper, we present an efficient decoding method that performs in real time for 20k word continuous speech recognition task. Basic search method is a one-pass Viterbi decoder on the search space constructed from the novel language model network. With the consistent search space representation derived from various language models by the LM network, we incorporate basic pruning strategies, from which tokens alive constitute a dynamic search space. To facilitate post-processing, it produces a word graph and a N-best list subsequently. The decoder is tested on the database of 20k words and evaluated with respect to accuracy and RTF.

Password-Based Key Exchange Protocols for Cross-Realm (Cross-Realm 환경에서 패스워드기반 키교환 프로토콜)

  • Lee, Young Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.4
    • /
    • pp.139-150
    • /
    • 2009
  • Authentication and key exchange are fundamental for establishing secure communication channels over public insecure networks. Password-based protocols for authenticated key exchange are designed to work even when user authentication is done via the use of passwords drawn from a small known set of values. There have been many protocols proposed over the years for password authenticated key exchange in the three-party scenario, in which two clients attempt to establish a secret key interacting with one same authentication server. However, little has been done for password authenticated key exchange in the more general and realistic four-party setting, where two clients trying to establish a secret key are registered with different authentication servers. In fact, the recent protocol by Yeh and Sun seems to be the only password authenticated key exchange protocol in the four-party setting. But, the Yeh-Sun protocol adopts the so called "hybrid model", in which each client needs not only to remember a password shared with the server but also to store and manage the server's public key. In some sense, this hybrid approach obviates the reason for considering password authenticated protocols in the first place; it is difficult for humans to securely manage long cryptographic keys. In this work, we introduce a key agreement protocol and a key distribution protocol, respectively, that requires each client only to remember a password shared with its authentication server.