• Title/Summary/Keyword: 판구조물

Search Result 23, Processing Time 0.027 seconds

A Study on the Impact and Vibration acting on the Laminated Composite Honeycomb Core Type Sandwich Plate Structure (복합적층 하니콤 코어형 샌드위치 판구조물에 미치는 충격과 진동에 관한 연구)

  • Hong, Do-Kwan;Seo, Jin;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.616-622
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of honeycomb core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. The laminated angle has the maximum value when the plate of honeycomb core is join to opposite direction. This paper shows that the natural frequency of CFRP is higher than that of GFRP, and also impact strength marks maximum value in case of antisymmetry than symmetry of core. Also it shows that the mode shapes are various along with the angle-ply of laminated composite plate.

  • PDF

Optimum Design of the Laminated Composite Sandwich Plate Structure of Truss Core considering Vibration Characteristics (복합적층 트러스 코어형 샌드위치 판구조물의 진동특성을 고려한 최적설계)

  • Jung, Suok-Mo;Hong, Do-Kwan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.703-709
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.

  • PDF

The Reduction of Harmonic Dynamic Response of Plate Structure Using Continuum Design Sensitivity Analysis (연속법에 의한 설계민감도를 이용한 판구조물의 조화진동저감)

  • 이재환;이광한
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.27-34
    • /
    • 1996
  • In this paper, design sensitivity of vibration displacement and acceleration is computed and design sensitivity, the derivative information of responses with respect to design perameters, is used as a design guidance tool to reduce the vibration. First, the harmonic vibration analysis of deck and simplified ship structures is performed by finite element method and secondly continuum disign sensityivity for excessive dynamic response is computed by continuum method. Both the direct and modal frequency response methods for the finite element analysis are adopted. Sensitivities of structural components such as upper plate, side wall, bilge, bottom plate are compared and the reductionof vibration is obtained by the proper increase of thickness of each component.

  • PDF

A Study on Vibration Power Flow of Truss Core Type Sandwich Plate Structure (트러스코어형 샌드위치 판구조물의 진동파워흐름에 관한 연구)

  • 구경민;김동영;홍도관;박일수;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.863-866
    • /
    • 2002
  • In this study, we tried to grasp the characteristic of vibration power flow for the truss core type sandwich plate structure. As the result of the finite element analysis, this paper shows that the vibration power flow characteristic of truss core type sandwich plate structure is understood and the vibration power flow of upper plate according to the mode shape of structure is various. Also it presents the vibration power flow is affected by reinforced structure.

  • PDF

Optimum Thickness Distributions of Plate Structure with Different Essential Boundary Conditions in the Fundamental Frequency Maximization Problem (기본고유진동수 최대화 문제에 있어서 경계조건에 따른 판구조물의 최적두께 분포)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.227-232
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

Lamb wave generation and analysis in a non-ferromagnetic plate using an orientation-adjustable patch-type magnetostrictive transducer (조향 자기변형 트랜스듀서(OPMT)를 이용한 비자성체 판구조물에서 램파 발생 및 신호해석)

  • Lee, Ju-Seung;Sun, Kyung-Ho;Cho, Seung-Hyun;Hong, Jin-Chul;Kim, Yoon-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.542-545
    • /
    • 2005
  • This paper is concerned wi th the generation of the Lamb waves in a non­ferromagnetic plate by a recently-developed orientation-adjustable patch-type magnetostrictive transducer (OPMT) and the dispersion analysis from the measured Lamb waves. OPMT is capable of adjusting wave-propagation orientation only with a single installation on a plate. The mechanics behind the wave generation and measurement by the magnetostrictive phenomenon, the working principle of OPMT is explained and the actual generation and measurement of the Lamb waves were conducted in a 3 mm-thick aluminum plate. For the accurate analysis of the dispersion characteristics of the measured Lamb waves, a modified version of the short-time Fourier transform, known as the dispersion-based short-time Fourier transform, was employed. The results presented in this work would serve as the underlying research for an advanced non-destructive evaluation based on ultrasonic waves.

  • PDF

A Study on the Finite Element Analysis of Three Dimensional Plate Structures (3차원 공간 판구조물의 유한요소 해석에 관한 연구)

  • 권오영;남정길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.54-59
    • /
    • 1999
  • High-speed electronic digital computers have enabled engineers to employ various numerical discretization techniques for solutions of complex problems. The Finite Element Method is one of the such technique. The Finite Element Method is one of the numerical analysis based on the concepts of fundamental mathematical approximation. Three dimensional plate structures used often in partition of ship, box girder and frame are analyzed by Finite Element Method. In design of structures, the static deflections, stress concentrations and dynamic deflections must be considered. However, these problem belong to geometrically nonlinear mechanical structure analysis. The analysis of each element is independent, but coupling occurs in assembly process of elements. So, to overcome such a difficulty the shell theory which includes transformation matrix and a fictitious rotational stiffness is taken into account. Also, the Mindlin's theory which is considered the effect of shear deformation is used. The Mindlin's theory is based on assumption that the normal to the midsurface before deformation is "not necessarily normal to the midsurface after deformation", and is more powerful than Kirchoff's theory in thick plate analysis. To ensure that a small number of element can represent a relatively complex form of the type which is liable to occur in real, rather than in academic problem, eight-node quadratic isoparametric elements are used. are used.

  • PDF

Investigation of CT Imaging Technique Using Guided Wave (유도초음파를 이용한 판 구조물 CT 영상화 기법)

  • Yoon, Hyun-Woo;Kang, To;Kim, Hak-Joon;Song, Sung-Jin;Shin, Ho-Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • Ultrasonic guided waves have been widely utilized for long range inspection of structures. Recently, many researchers have paid attention to the tomographic imaging using guided wave for the diagnosis of plate-like structures because group velocity of guided waves is changed by central frequency of transducer and thickness of plate. Currently, Delay and Sum imaging technique and MVDR(Minimum Variance Distortionless Response) imaging technique are performed. So the performance of these two imaging techniques are investigated in this paper.

Finite Difference Nonlinear Analysis of Composite Plate Structures with Various Layer Sequences (다양한 적층 배열을 갖는 복합 신소재 판 구조물의 유한차분 비선형 해석)

  • Lee, Sang Bum;Lee, Sang Youl;Lee, Rae Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.159-168
    • /
    • 2005
  • This study carries out a finite difference nonlinear analysis of anisotropic advanced composite plate structures with various layer sequences. In the numerical analysis of various mechanical problems involving complex partial differential equations, the finite difference method (FDM) developed in this study has an advantage over the finite element method in its ability to avoid mesh generation and numerical integration. Many studies in FDM have been made on clamped or simple boundary conditions using merely an energy approach. These approaches cannot be satisfied, however, with pivotal points along the free boundary. Therefore, this study addresses the nonlinear problem of anisotropic plates by adopting a finite difference modeling elimination of pivotal difference points in the case of a free boundary condition. Complex nonlinear behaviors of composite plate structures for various parameters, especially for layer sequences, are analyzed using the proposed approach.

A Study on the Comparison of Triangular and Quadrilateral Elements for the Analysis of 3 Dimensional Plate Structures (3차원 판구조물 해석을 위한 삼각형요소와 사각형 요소의 비교에 관한 연구)

  • 왕지석;김유해;이우수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.344-352
    • /
    • 2002
  • In the analysis of the 3 dimensional plate structures by the finite element method, the triangular elements are generally used for the global stiffness matrix of the analyzed system. But the triangular elements of the plates have some problems in the process of formulation and in the precision of analysis. The formulation of the finite element method to analyze 3 dimensional plate structures using quadrilateral elements is presented in this paper. The degree of freedom off nodal point is 6, that is, the displacements in the direction off-y-z is and the rotations about x-y-z axis and then the degree of freedom off element is 24. For the comparison of the analysis using triangular elements and quadrilateral elements, the rectangular plates subjected to the uniform load and a concentrated load on the centroid of the plate, for which the theoretical solutions have been obtained, are analyzed. The calculated deflections of the rectangular plates using the finite element method by the triangular elements and the quadrilateral elements are also compared with the deflections of the plates calculated by theoretical solutions. The defections of the rectangular plates calculated by the finite element method using the quadrilateral elements are closer to the theoretical solutions than the defections calculated by the finite element method using the triangular elements. The deflection of the centroid of plate, calculated by the finite element method, converges to that of theoretical solution as the number of elements is increased. This convergence is much more rapid for the case of using the quakrilateral elements than fir the case of using triangular elements.