• Title/Summary/Keyword: 파일 항타

Search Result 24, Processing Time 0.022 seconds

Optimization for Configuration and Material Cost of Helical Pile Using Harmony Search Algorithm (하모니서치 알고리즘을 이용한 헬리컬 파일의 형상 및 재료비 최적 설계기법에 대한 연구)

  • Na, Kyunguk;Lee, Dongseop;Lee, Hyungi;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.377-386
    • /
    • 2015
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. Advantages of the helical pile are no need for boring or grout process, and ability to install a pile foundation with relatively light devices. In this study, an optimized design method for helical piles is proposed to minimize the material cost with consideration of the load bearing capacity obtained by the cylindrical shear method. The harmony search meta-heuristic algorithm was adopted for optimization process. The optimized design was verified by comparing with the 2009 International building code. It is noted that the optimization for the configuration of helical piles along with material cost proves to be an out-performed tool in designing helical pile foundation with economic feasibility.

A Study On Structural Behavior of Anchor Pile Precast Retaining Wall with Screw Shape Flange (나선형 플렌지가 설치된 앵커파일 프리캐스트 옹벽의 구조적 거동에 관한 연구)

  • Choi, Seung-Seon;Ahn, Tae-Bong;Kim, Woo-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.129-138
    • /
    • 2013
  • In this study, Anchor Pile Precast Retaining Wall (APC) with screw shape flange was investigated and the results were arranged for designing APC specifications. Since precast materials require special care when they are manufactured, carried or treated, more accurate design and analysis of optimized dimension are needed : thus moment distribution of front foot was checked. Through full-scale field test, form and optimal stiffening shape were obtained and through fracture test with real load, applicable load was reasonably calculated. Research result in this thesis could be used as guideline or standard of designing and constructing Anchor Pile Precast Retaining Wall with screw shape flange.

Experimental Study for Prediction of Ground Vibration Responses by the Low-Vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Park, Sun-Joon;Kang, Sung-Hoo;Jung, Seug-Gyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.201-207
    • /
    • 2010
  • In this study, the SIP (Soil-cement Injected precast Pile) method among the Low-vibration & Low-noise pile driving methods was decided into study compensation. Ground vibrations by the SIP methods step by step divide and were analyzed. Quantitative response values and ground vibration equations with reliability were presented from findings of this study. Also, vibration responses that are occurred by the SIP method of construction were compared as quantitative with vibration responses by general method of construction that are presented in existent study. Ground vibration values by the SIP method correspond to level of 17 ~ 57% of values that are assumed by the Attewell & Famer's equation, respectively, and these result compares in reliability 50% and separated distance 10 ~ 50 m. Also, those values were analyzed that correspond to level of 14 ~ 96% of ground vibration values by the Prof. Park's equation, respectively. Construction limit extents, separation distances from vibration occurs position, were presented that can satisfy domestic criteria for vibration control for the SIP methods. Those presented in this paper were divided newly according to reliability.

  • PDF

Experimental Study for Prediction of Ground Vibration Responses by the Low-vibration Pile Driving Methods (저진동 파일시공법에 따른 지반진동 응답 예측을 위한 실험적 연구)

  • Kang, Sung-Hoo;Jeoung, Sug-Kyu;Park, Sun-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • This study investigated the SIP-method as a low-vibration, low-noise engineering method. The ground vibrations caused by the SIP-method were measured and analyzed in each step. From the analysis results, quantitative ground vibration values and reliable vibration estimation equations were proposed. Furthermore, the ground vibrations caused by the SIP-method were compared with the ground vibrations caused by other methods presented by existing studies. Based on the vibration estimation equation with 50 % reliability, the ground vibration values by the SIP-method at the distance of 10~150 m corresponded to 17~57 % of the ground vibration values by the equation proposed by Attewell & Famer, and 14~96 % of the ground vibration values by the equation proposed by Prof. Park in his study using a diesel drop hammer. These results showed that the ground vibration reduction effect of the SIP-method was higher those of other general engineering methods. Finally, the permissible scope of work using the SIP-method which meets the domestic vibration standards was presented.

Vibration monitoring at Vibrating Compaction Works for Ground Improvement (진동 지반다짐 공법에 대한 장기간 진동계측 사례)

  • Kim, Duk-Young;Kim, Sun-Woong
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.40-43
    • /
    • 2015
  • In this case study, a S/W optimized for ground vibration monitoring and analysis was developed. It was applied at vibrating compaction works for the ground improvement needed for the expansion of terminal 5 in Chagi International Airport in Singapore. The possible application of the new vibration analysis software to similar works like pile driving and the capability of long term and real time of the repeated wave vibration at seawalls, the vibration occurring from large structures like super tall buildings, tunnels, long cable hanging bridges, and etc were investigated.

Estimating of Optimal Allowed Distance for Reducing Vibration and Noise Problems by Pile Driving after Drilling Method in Deep Foundation Work (천공 후 말뚝타격공법의 진동 $\cdot$ 소음 문제 해소를 위한 적정 이격거리 산정 방안 연구)

  • Park Hong-Tae;Kang Lee-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.152-163
    • /
    • 2005
  • Pile driving work causes a vibration problem in the construction site using pile foundation and often causes civil affairs by construction noise around the construction site. For the vibration and noise problems, the driving after drilling method rather than the direct driving method is being generalized for reducing vibration and noise. However, this method also causes civil affairs when the driving work is operated in adjacent area. This study suggests a criterion for evaluating an optimal allowed distance for pile driving work by the driving after drilling method. Actual surveys of vibration and noise for pile driving work in seven construction sites were used for developing regression analysis equations. The results can be a standard to estimate the allowed distance to avoid vibration and noise problems in pile driving work for deep foundation.

Mixture Study for Early-age Strength Improvement of NAC-typed High-strength Concrete Piles (NAC 방식 고강도 콘크리트 파일의 초기강도증진을 위한 배합에 대한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.58-64
    • /
    • 2012
  • Due to the influence of global oil prices, industrial productivity, which oil consumption is high, was significantly reduced. AC type of high-strength PHC piles is being manufactured through twice the steam curing process and this have resulted in a significant rise for product's manufacturing costs. NAC way other types of file manufacturing process has the advantage of reducing manufacturing costs by a turn of the steam curing. Nevertheless, because the initial strength be poor than that of AC method, shipment is being after the curing period of approximately three days. In addition, the growth of the product enhance with curing period can not be avoided, as a result, cost of inventory is acting as the rise. Piles by the AC method is immediately shipped after curing, damaging problems does not occur when they are introduced to the field site (for example, pile on-site). In the case of NAC, however, at least after the curing period of three days and after expressing the strength of 80 MPa or more, they are shipped on the scene. Therefore, NAC type has problems as follows: (1) increase in moderate inventory holding costs with type and (2) breakage in the field due to lack of strength. In this study, for NAC-typed PHC files, mixing characteristics research for the strength development at 1 day equivalent to AC method were conducted and strength characteristics with changes of original materials were evaluated were also identified.

Experimental Study on Vibration Reduction Estimation of PRD Pile Driving Method (PRD Pile Driving공법의 진동저감 평가를 위한 실험적 연구)

  • Kang, Sung-Hoo;Park, Sun-Joon;Jung, Seok-Gyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.775-782
    • /
    • 2008
  • In this study, ground vibrations and aero space noises that is produced by the PRD(percussion rotary drill) were analyzed by work processes. Ground vibration equations were suggested by $2.798(SD)^{-0.793}$, $3.485(SD)^{-0.793}$, $3.705(SD)^{-0.793}$, according to experiment result, and these equations have reliability of 50%, 90%, 95%, respectively. Ground vibration values by the PRD method correspond to level of $5{\sim}34%$ of values that are assumed by the Attewell & Farmer's equation, and these result compares in reliability 50%. Also, those values were analyzed that correspond to level of $12{\sim}26%$ of ground vibration values by the Prof. Park etc.'s equations. But, the aero space noise was evaluated that is assumed by 88.9 dB(A) at separated distance 50m and is not satisfied even 85dB(A) that is the most negative noise value that present in domestic noise standard. The PRD method was analyzed that noise decrease effect exists hardly comparing with general pile driving method of construction. When is based in these results, the PRD method is judged that it is desirable that classify by the Low-vibration method more than the Non-violation noise method.

An Experimental Study on the Effects of Early-age Vibrations for Properties of Concrete (진동이 양생초기 콘크리트에 미치는 영향에 관한 연구)

  • 오병환;송혜금;조재열
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.81-87
    • /
    • 1998
  • 최근 들어 교통난 해소를 위한 도로확폭 공사나 파일항타 및 발파 등의 공사가 많이 진행되고 있으며, 이러한 경우 진동의 영향으로 콘크리트의 품질 저하에 영향을 미칠 것으로 예상된다. 이에 따라 본 연구에서는 진동과 굳지 않은 콘크리트에 미치는 영향을 평가하기 위하여 실험변수를 진동속도, 진동발생점등으로 나누어, 콘크리트의 압축강도, 부착강도를 측정하였다. 또한 응결시간을 측정하여 외부 진동용인이 응력에 미치는 영향을 평가하였다. 진동속도는 0.25cm/sec ~4.2cm/sec까지 변화시켰고, 진동가력시점은 타설 직후(0시간)부터 타설 후 2, 4, 6, 12 시간 후 에 진동을 가하였다. 본 연구의 실험 결과 진동속도 0.25cm/sec 에서는 압축 강도와 부착강도가 증가하는 반면에 진동속도 0.5cm/sec 이상에서는 압축강도는 5~12% 정도 감소하고 부착강도도 이와 유사하게 감소하는 것으로나타나고 있다. 응결시간은 0.25cm/sec의 작은 진동에서는 영향이 거의 없으나 0.5cm/sec 이상에서는 타설 직후의 진동시 응결시간이 다소 빨라지는 것으로 나타났다. 본 연구 결과, 양생초기 콘크리트의 진동 허용치는 약 0.3~0.4cm/sec 로 나타나고 있으며, 이것은 앞으로 실제 구조물의 시공시 진동규제치로서 하나의 유용한 자료가 될 수 있을 것으로 사료된다.

A Case of Change in Pile Foundation By Construction Condition in Site (현장상황을 반영한 말뚝기초의 변경 사례)

  • Park, See-Boum;Oh, Geon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.775-778
    • /
    • 2008
  • 기초의 지지방식 중 깊은 기초로 분류되는 말뚝기초는 일반적으로 고강도의 기성강관(Spiral Steel Pipe)을 재료로 한 말뚝을 사용하는 것이 설계 및 시공측면에서 유리하나, 현재 국내 외의 치솟는 건설원자재 비용 및 고유가에 따른 장거리 운반비용의 증가와 더불어 건설현장에서의 경제적 부담이 상당부분 증가되고 있는 실정이다. 특히, 개발후진국을 비롯한 건설 산업의 국제적 진출에 대한 활기와 더불어 해외현장 변동상황(원자재의 수급 문제에 따른 공기지연 및 경제성) 등을 고려하면 이에 대한 능동적인 대처가 절실할 수 있다. 본 사례는 중동지역 $\bigcirc\bigcirc$조선소의 이러한 현장여건을 고려하여 중 소하중 규모의 크레인 기초에 적용된 말뚝의 구조 해석적 검토와 지역 지반조건을 반영하여 안정하고 현지조달이 가능한 말뚝 재료의 변경을 제안한 경우이다. 본 검토에서는 기초 말뚝의 정역학적 허용지지력과 기초지반 조건을 고려한 항타관입 분석 및 크레인 이동하중을 고려한 응력해석을 실시하여 최대연직력, 모멘트, 전단력, 응력비 등을 비교하였으며, 동일한 검토조건하에서 결과를 바탕으로 변경 가능한 말뚝을 선정하였다. 기초지반에 대한 적정안전율을 갖는 허용지지력 및 구조적 안정성의 확보가 가능한 콘크리트 말뚝으로의 변경이 가능하며 상부하중 규모에 따라 설치간격에 따른 파일본수의 증 감이 발생되었다.

  • PDF