• 제목/요약/키워드: 파스칼 삼각형

검색결과 7건 처리시간 0.024초

파스칼의 삼각형, 계차수열 및 행렬의 연계와 표현 (The connections and representation of Pascal Triangles, Difference sequences and Matrices)

  • 김익표;황석근
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제43권4호
    • /
    • pp.391-398
    • /
    • 2004
  • It is well-known in the literature that the general term of a sequence can be represented by a linear combination of binomial coefficients. The theorem and its known proofs are not easy for highschool students to understand. In this paper we prove the theorem by a pictorial method and by a very short and easy inductive method to make the problem easy and accessible enough for highschool students.

  • PDF

수학적 추론과 연결성의 교수.학습을 위한 소재 연구 -도형수, 파스칼 삼각형, 피보나치 수열을 중심으로- (A Study on Teaching Material for Enhancing Mathematical Reasoning and Connections - Figurate numbers, Pascal's triangle, Fibonacci sequence -)

  • 손홍찬
    • 대한수학교육학회지:학교수학
    • /
    • 제12권4호
    • /
    • pp.619-638
    • /
    • 2010
  • 본 고에서는 평면이나 공간에서 정의된 도형수가 일반적으로 유한 차원에서 일반화될 때 저차원의 도형수인 그노몬수, 다각수 그리고 다각뿔수의 성질을 통합적으로 설명할 수 있음을 논하고, 도형수와 파스칼 삼각형, 피보나치 수열의 성질과 그들 사이의 관계를 알아봄으로써 이들에 대한 성질 탐구가 수학적 추론과 연결성을 지도하기 적합한 소재가 될 수 있음을 논한다.

  • PDF

형식불역의 원리를 통한 고차원 도형의 탐구 (An investigation on the hyper-dimensional figure by the principle of the permanence of equivalent forms)

  • 송상헌
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제13권4호
    • /
    • pp.495-506
    • /
    • 2003
  • 본 논문에서는 형식불역의 원리를 적용하여 4차원 이상의 고차원 도형 중 특별한 몇 가지 도형의 기하학적 모델을 탐구해 보면서 이것이 기존의 일반적인 수학적 성질과 원리, 법칙에 모순됨이 없는지를 검증해 보았다. 정다면체는 5개뿐이라는 설명 방식에 형식불역의 원리를 적용하면 4차원 정다포체는 6개뿐임을 설명할 수 있다. 그리고 두 가지 정의(기둥형과 뿔형)에 의해 만들어진 볼록한 고차원 도형들은 다면체에서의 오일러 정리를 일반화한 오일러 특성수에 정확히 들어맞는다는 것을 확인할 수 있다. 특히, 뿔형의 경우는 그 도형의 꼭지점, 모서리, 면, 입체 등의 개수들이 파스칼의 삼각형 구조를 이루고 있으며 기둥형의 경우는 임의로 정한 수의 모든 약수들을 하세의 다이어그램을 통해 약수와 배수의 관계로 표현할 수 있다. 이러한 소재들은 영재 교수학습용 자료로도 활용할 수 있을 것이다.

  • PDF

파스칼 삼각 이론 기반의 IoT 장치간 효율적인 인증 설립 기법 (Efficient Authentication Establishment Scheme between IoT Device based on Pascal Triangle Theory)

  • 한군희;정윤수
    • 한국융합학회논문지
    • /
    • 제8권7호
    • /
    • pp.15-21
    • /
    • 2017
  • 최근 4차 산업 혁명이 사회적으로 대두되면서 IoT 관련 제품에 대한 사용자들의 관심이 증가하고 있다. IoT 장치에 사용되고 있는 센서의 종류와 기능은 점점 다양화되고 있어 IoT 장치의 상호 인증 기술이 요구되고 있다. 본 논문에서는 서로 다른 종류의 IoT 장치들이 서로 상호 연계하여 원활하게 동작될 수 있도록 파스칼 삼각형 이론을 이용한 효율적인 이중 서명 인증 키 설립 기법을 제안한다. 제안 기법은 IoT 장치간 인증 경로를 2개(주경로와 보조 경로)로 구분하여 IoT 장치의 인증 및 무결성을 보장한다. 또한, 제안 기법은 IoT 장치를 인증할 때 추가적인 암호 알고리즘이 필요하지 않도록 키를 생성하기 때문에 적은 용량을 필요로 하는 IoT 장치에 적합하다. 성능 평가 결과, 제안 기법은 IoT 장치의 지연시간을 기존 기법보다 6.9% 향상되었고, 오버헤드는 기존 기법보다 11.1% 낮은 결과를 얻었다. IoT 장치의 인증 처리율은 기존 기법보다 평균 12.5% 향상되었다.

이론적 일반화를 적용한 파스칼 그래프와 삼각형에 내재된 수의 패턴 탐구를 위한 교수단원의 설계 (On the design of a teaching unit for the exploration of number patterns in Pascal graphs and triangles applying theoretical generalization.)

  • 김진환
    • East Asian mathematical journal
    • /
    • 제40권2호
    • /
    • pp.209-229
    • /
    • 2024
  • In this study, we design a teaching unit that constructs Pascal graphs and extended Pascal triangles to explore number patterns inherent in them. This teaching unit is designed to consider the diachronic process of teaching-learning by combining Dörfler's theoretical generalization model with Wittmann's design science ideas, which are applied to the didactical practice of mathematization. In the teaching unit, considering the teaching-learning level of prospective teachers who studied discrete mathematics, we generalize the well-known Pascal triangle and its number patterns to extended Pascal triangles which have directed graphs(called Pascal graphs) as geometric models. In this process, the use of symbols and the introduction of variables are exhibited as important means of generalization. It provides practical experiences of mathematization to prospective teachers by going through various steps of the generalization process targeting symbols. This study reflects Wittmann's intention in that well-understood mathematics and the context of the first type of empirical research as structure-genetic didactical analysis are considered in the design of the learning environment.

피보나치 수열의 일반화에 관한 고찰 (A Study on Generalized Fibonacci Sequence)

  • 양영오;김태호
    • 한국수학사학회지
    • /
    • 제21권4호
    • /
    • pp.87-104
    • /
    • 2008
  • 본 연구에서는 유명한 피보나치 수열을 일반화하는 g-피보나치 수열 $\{g_n\}$={a, b, a+b, a+2b, 2a+3b, 3a+5b,...}의 여러 가지 성질과 특성을 조사한다. 특히, g-피보나치 수열의 합에 관한 항등식과 제 n항 $g_n$(비네의 공식의 일반화)을 구체적으로 구한다. 또한 피보나치 수열에 관한 카타란의 항등식의 일반화된 항등식과 A. Tagiuri의 항등식을 구하고 $g_n$과 파스칼 삼각형과의 관계식과 g-피보나치 수 $g_n$이 얼마나 빨리 커지는가를 조사한다. 아울러 g-피보나치 수열의 초항과 둘째 항이 서로 소일 때 연속하는 두 항은 서로 소이며, 연속하는 두 항의 비율 $\{\frac{g_{n+1}}{g_n}\}$은 황금비 $\frac{1+\sqrt5}2$ 수렴함을 밝히고자한다.

  • PDF

수학 영재들을 4차원 도형에 대한 탐구로 안내하는 사례 연구 (A Case Study on Guiding the Mathematically Gifted Students to Investigating on the 4-Dimensional Figures)

  • 송상헌
    • 영재교육연구
    • /
    • 제15권1호
    • /
    • pp.85-102
    • /
    • 2005
  • 이 연구는 경기과학고등학교 1학년 학생 5명을 대상으로 사사연구를 진행하면서 학생들이 탐구한 수학적인 내용에 대한 분석과 그 결과가 나오기까지 멘토링을 하는 지도교수의 역할을 설명하고 있다. 학생들이 탐구한 수학적인 내용은 4차원 도형의 모양과 그 도형들에 나타나는 수학적인 성질이다. 지도교수는 연구에 익숙하지 않은 학생들을 위하여 수학자 피코크가 제안했던 '형식불역의 원리'를 모델로 삼도록 했고, 지도교수는 학생들의 창조적인 산출물 생산을 격려하기 위해 수학교육학자 프로이덴탈의 '안내된 재발명의 방법'을 사용하였다. 학생들은 지도교수의 안내에 의한 (재)발명의 원리에 따라 기존에 이미 알고 있던 수학적 성질을 고차원 도형에 적용시키면서 확장, 일반화시켜나갔는데, 여기에는 '형식불역의 원리'라는 틀이 매우 유용하게 작용하였다. 지도교사는 학생들에게 3차원 도형을 2차원에 표현하는 겨냥도, 전개도, 평면그래프를 응용하여 4차원을 3차원과 2차원에 표현하는 방식을 탐구하도록 하였다. 이 과정에서 학생들은 이미 알려진 파스칼의 삼각형과 이항정리, 오일러 정리, 하세의 다이어그램 등을 4차원 이상의 도형을 탐구할 때에도 적용할 수 있음을 확인하였다. 그리고 몇 가지의 추측과 후속 연구 과제를 제안하였다. 학생들의 산출물들은 형식불역의 원리와 안내된 재발명의 방법의 결과물인 것이다. 이 연구는 사사연구의 과정에 도움이 될 수 있는 3가지의 제안과 그 실 예를 담고 있다.